Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Spine J ; 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38688331

RESUMO

BACKGROUND CONTEXT: Following total sacrectomy, lumbopelvic reconstruction is essential to restore continuity between the lumbar spine and pelvis. However, to achieve long-term clinical stability, bony fusion between the lumbar spine and the pelvic ring is crucial. Reduction of the lumbopelvic distance can promote successful bony fusion. Although many lumbopelvic reconstruction techniques (LPRTs) have been previously analyzed, the biomechanical effect of lumbopelvic distance reduction (LPDR) has not been investigated yet. PURPOSE: To evaluate and compare the biomechanical characteristics of four different LPRTs while considering the effect of LPDR. STUDY DESIGN/SETTING: A comparative finite element (FE) study. METHODS: The FE models following total sacrectomy were developed to analyze four different LPRTs, with and without LPDR. The closed-loop reconstruction (CLR), the sacral-rod reconstruction (SRR), the four-rod reconstruction (FRR), and the improved compound reconstruction (ICR) techniques were analyzed in flexion, extension, lateral bending, and axial rotation. Lumbopelvic stability was assessed through the shift-down displacement and the relative sagittal rotation of L5, while implant safety was evaluated based on the stress state at the bone-implant interface and within the rods. RESULTS: Regardless of LPDR, both the shift-down displacement and relative sagittal rotation of L5 consistently ranked the LPRTs as ICR

2.
Spine J ; 24(7): 1323-1333, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38307174

RESUMO

BACKGROUND CONTEXT: Oblique lumbar interbody fusion (OLIF) can provide an ideal minimally invasive solution for achieving spinal fusion in an older, more frail population where decreased bone quality can be a limiting factor. Stabilization can be achieved with bilateral pedicle screws (BPS), which require additional incisions and longer operative time. Alternatively, a novel self-anchoring stand-alone lateral plate system (SSA) can be used, where no additional incisions are required. Based on the relevant literature, BPS constructs provide greater primary biomechanical stability compared to lateral plate constructs, including SSA. This difference is further increased by osteoporosis. Screw augmentation in spinal fusion surgeries is commonly used; however, in the case of OLIF, it is a fairly new concept, lacking a consensus-based guideline. PURPOSE: This comparative finite element (FE) study aimed to investigate the effect of PMMA screw augmentation on the primary stability of a stand-alone implant construct versus posterior stabilization in OLIF with osteoporotic bone quality. STUDY DESIGN: The biomechanical effect of screw augmentation was studied inside an in-silico environment using computer-aided FE analysis. METHODS: A previously validated and published L2-L4 FE model with normal and osteoporotic bone material properties was used. Geometries based on the OLIF implants (BPS, SSA) were created and placed inside the L3-L4 motion segment with increasing volumes (1-6 cm3) of PMMA augmentation. A follower load of 400 N and 10 Nm bending moment (in the three anatomical planes) were applied to the surgical FE models with different bone material properties. The operated L3-L4 segmental range of motion (ROM), the inserted cage's maximal caudal displacements, and L4 cranial bony endplate principal stress values were measured. RESULTS: The nonaugmented values for the BPS construct were generally lower compared to SSA, and the difference was increased by osteoporosis. In osteoporotic bone, PMMA augmentation gradually decreased the investigated parameters and the difference between the two constructs as well. Between 3 cm3 and 4 cm3 of injected PMMA volume per screw, the difference between augmented SSA and standard BPS became comparable. CONCLUSIONS: Based on this study, augmentation can enhance the primary stability of the constructs and decrease the difference between them. Considering leakage as a possible complication, between 3 cm3 and 4 cm3 of injected PMMA per screw can be an adequate amount for SSA augmentation. However, further in silico, and possibly in vitro and clinical testing is required to thoroughly understand the investigated biomechanical aspects. CLINICAL SIGNIFICANCE: This study sheds light on the possible biomechanical advantage offered by augmented OLIF implants and provides a theoretical augmentation amount for the SSA construct. Based on the findings, the concept of an SSA device with PMMA augmentation capability is desirable.


Assuntos
Análise de Elementos Finitos , Vértebras Lombares , Osteoporose , Parafusos Pediculares , Polimetil Metacrilato , Fusão Vertebral , Fusão Vertebral/métodos , Fusão Vertebral/instrumentação , Humanos , Vértebras Lombares/cirurgia , Osteoporose/cirurgia , Fenômenos Biomecânicos , Cimentos Ósseos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA