Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Diabetologia ; 66(8): 1557-1575, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37351595

RESUMO

AIMS/HYPOTHESIS: Type 2 diabetes is associated with increased risk of cognitive decline although the pathogenic basis for this remains obscure. Deciphering diabetes-linked molecular mechanisms in cells of the cerebral cortex could uncover novel therapeutic targets. METHODS: Single-cell transcriptomic sequencing (scRNA-seq) was conducted on the cerebral cortex in a mouse model of type 2 diabetes (db/db mice) and in non-diabetic control mice in order to identify gene expression changes in distinct cell subpopulations and alterations in cell type composition. Immunohistochemistry and metabolic assessment were used to validate the findings from scRNA-seq and to investigate whether these cell-specific dysfunctions impact the neurovascular unit (NVU). Furthermore, the behavioural and cognitive alterations related to these dysfunctions in db/db mice were assessed via Morris water maze and novel object discrimination tests. Finally, results were validated in post-mortem sections and protein isolates from individuals with type 2 diabetes. RESULTS: Compared with non-diabetic control mice, the db/db mice demonstrated disrupted brain function as revealed by losses in episodic and spatial memory and this occurred concomitantly with dysfunctional NVU, neuronal circuitry and cerebral atrophy. scRNA-seq of db/db mouse cerebral cortex revealed cell population changes in neurons, glia and microglia linked to functional regulatory disruption including neuronal maturation and altered metabolism. These changes were validated through immunohistochemistry and protein expression analysis not just in the db/db mouse cerebral cortex but also in post-mortem sections and protein isolates from individuals with type 2 diabetes (74.3 ± 5.5 years) compared with non-diabetic control individuals (87.0 ± 8.5 years). Furthermore, metabolic and synaptic gene disruptions were evident in cortical NVU cell populations and associated with a decrease in vascular density. CONCLUSIONS/INTERPRETATION: Taken together, our data reveal disruption in the cellular and molecular architecture of the cerebral cortex induced by diabetes, which can explain, at least in part, the basis for progressive cognitive decline in individuals with type 2 diabetes. DATA AVAILABILITY: The single-cell sequencing data that supports this study are available at GEO accession GSE217665 ( https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE217665 ).


Assuntos
Disfunção Cognitiva , Diabetes Mellitus Tipo 2 , Camundongos , Animais , Diabetes Mellitus Tipo 2/complicações , Disfunção Cognitiva/tratamento farmacológico , Córtex Cerebral/metabolismo , Modelos Animais de Doenças
2.
J Neurosci Res ; 99(12): 3103-3120, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34713467

RESUMO

Fas Apoptotic Inhibitory Molecule protein (FAIM) is a death receptor antagonist and an apoptosis regulator. It encodes two isoforms, namely FAIM-S (short) and FAIM-L (long), both with significant neuronal functions. FAIM-S, which is ubiquitously expressed, is involved in neurite outgrowth. In contrast, FAIM-L is expressed only in neurons and it protects them from cell death. Interestingly, FAIM-L is downregulated in patients and mouse models of Alzheimer's disease before the onset of neurodegeneration, and Faim transcript levels are decreased in mouse models of retinal degeneration. However, few studies have addressed the role of FAIM in the central nervous system, yet alone the retina. The retina is a highly specialized tissue, and its degeneration has proved to precede pathological mechanisms of neurodegenerative diseases. Here we describe that Faim depletion in mice damages the retina persistently and leads to late-onset photoreceptor death in older mice. Immunohistochemical analyses showed that Faim knockout (Faim-/- ) mice present ubiquitinated aggregates throughout the retina from early ages. Moreover, retinal cells released stress signals that can signal to Müller cells, as shown by immunofluorescence and qRT-PCR. Müller cells monitor retinal homeostasis and trigger a gliotic response in Faim-/- mice that becomes pathogenic when sustained. In this regard, we observed pronounced vascular leakage at later ages, which may be caused by persistent inflammation. These results suggest that FAIM is an important player in the maintenance of retinal homeostasis, and they support the premise that FAIM is a plausible early marker for late photoreceptor and neuronal degeneration.


Assuntos
Proteínas Reguladoras de Apoptose , Gliose , Neurônios , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Reguladoras de Apoptose/fisiologia , Morte Celular , Gliose/patologia , Camundongos , Neurônios/metabolismo , Retina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...