Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 18342, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34526572

RESUMO

Indium-substituted strontium hexaferrites were prepared by the conventional solid-phase reaction method. Neutron diffraction patterns were obtained at room temperature and analyzed using the Rietveld methods. A linear dependence of the unit cell parameters is found. In3+ cations are located mainly in octahedral positions of 4fVI and 12 k. The average crystallite size varies within 0.84-0.65 µm. With increasing substitution, the TC Curie temperature decreases monotonically down to ~ 520 K. ZFC and FC measurements showed a frustrated state. Upon substitution, the average and maximum sizes of ferrimagnetic clusters change in the opposite direction. The Mr remanent magnetization decreases down to ~ 20.2 emu/g at room temperature. The Ms spontaneous magnetization and the keff effective magnetocrystalline anisotropy constant are determined. With increasing substitution, the maximum of the ε/ real part of permittivity decreases in magnitude from ~ 3.3 to ~ 1.9 and shifts towards low frequencies from ~ 45.5 GHz to ~ 37.4 GHz. The maximum of the tg(α) dielectric loss tangent decreases from ~ 1.0 to ~ 0.7 and shifts towards low frequencies from ~ 40.6 GHz to ~ 37.3 GHz. The low-frequency maximum of the µ/ real part of permeability decreases from ~ 1.8 to ~ 0.9 and slightly shifts towards high frequencies up to ~ 34.7 GHz. The maximum of the tg(δ) magnetic loss tangent decreases from ~ 0.7 to ~ 0.5 and shifts slightly towards low frequencies from ~ 40.5 GHz to ~ 37.7 GHz. The discussion of microwave properties is based on the saturation magnetization, natural ferromagnetic resonance and dielectric polarization types.

2.
Phys Chem Chem Phys ; 22(21): 11817-11828, 2020 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-32412020

RESUMO

Manganites are multifunctional materials which are widely used in both technology and devices. In this article, new prospects of their use as nanoparticles for various types of applications are demonstrated. For that, the ferromagnetic nanopowder of La0.6Sr0.4MnO3 has been synthesized by the sol-gel method with a subsequent annealing at 700-900 °C. The crystal structure, phase composition and morphology of nanoparticles as well as magnetic, magnetothermal and electrocatalytic properties have been studied comprehensively. The critical sizes of superparamagnetic, single-domain, and multi-domain states have been determined. It has been established that an anomalously wide temperature range of magnetocaloric properties is associated with an additional contribution to the magnetocaloric effect from superparamagnetic nanoparticles. The maximum values of the specific loss power are observed in the relaxation hysteresis region near the magnetic phase transition temperature. The electrochemical stability and features of the decomposition of nanoparticles in 1 M KOH and Na2SO4 electrolytes have been determined. A decrease in the particle size contributes to an increase in electrocatalytic activity for overall water splitting. Magnetocaloric and electrocatalytic results of the work indicate the prospects for obtaining the possibility of changing the temperature regime of electrocatalysis using contactless heating or cooling.

3.
RSC Adv ; 10(51): 30907-30916, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35516065

RESUMO

For many medical applications related to diagnosis and treatment of cancer disease, hyperthermia plays an increasingly important role as a local heating method, where precise control of temperature and parameters of the working material is strongly required. Obtaining a smart material with "self-controlled" heating in a desirable temperature range is a relevant task. For this purpose, the nanopowder of manganite perovskite with super-stoichiometric manganese has been synthesized, which consists of soft spherical-like ferromagnetic nanoparticles with an average size of 65 nm and with a narrow temperature range of the magnetic phase transition at 42 °C. Based on the analysis of experimental magnetic data, a specific loss power has been calculated for both quasi-stable and relaxation hysteresis regions. It has been shown that the local heating of the cell structures to 42 °C may occur for a short time (∼1.5 min.) Upon reaching 42 °C, the heating is stopped due to transition of the nanopowder to the paramagnetic state. The obtained results demonstrate the possibility of using synthesized nanopowder as a smart magnetic nanomaterial for local hyperthermia with automatic heating stabilization in the safe range of hyperthermia without the risk of mechanical damage to cell structures.

4.
Dalton Trans ; 46(28): 9010-9021, 2017 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-28654128

RESUMO

BaFe12-xGaxO19 (x ≤ 1.2) hexaferrites were synthesized via the usual ceramic technology. It has been established that with an increase in x, the unit cell and magnetic parameters monotonically decrease. The frequency of natural ferromagnetic resonance firstly decreases from 49.6 GHz down to 49.1 GHz when x = 0.6, and then it increases up to 50.5 GHz. The line width monotonically increases from 3.5 GHz up to 5 GHz. The peak amplitude of the resonant curve changes slightly with the exception of when x = 0.9, when it reaches -16 dB. The 1.3 GHz kOe-1 frequency shift in the bias field is more intensive for small values, when x = 0.3. The decreasing values of the magnetic parameters are a result of the dilution of Fe3+-O2--Fe3+ superexchange interactions. The behavior of the amplitude-frequency characteristics is largely determined through the reduction of uniaxial exchange anisotropy. The prospects of Ga-substituted hexaferrites acting as a material that effectively absorbs the high-frequency electromagnetic radiation are shown.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...