Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Sleep Health ; 9(6): 801-820, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37684151

RESUMO

OBJECTIVE: To develop and present consensus findings of the National Sleep Foundation sleep timing and variability panel regarding the impact of sleep timing variability on health and performance. METHODS: The National Sleep Foundation assembled a panel of sleep and circadian experts to evaluate the scientific evidence and conduct a formal consensus and voting procedure. A systematic literature review was conducted using the NIH National Library of Medicine PubMed database, and panelists voted on the appropriateness of 3 questions using a modified Delphi RAND/UCLA Appropriateness Method with 2 rounds of voting. RESULTS: The literature search and panel review identified 63 full text publications to inform consensus voting. Panelists achieved consensus on each question: (1) is daily regularity in sleep timing important for (a) health or (b) performance? and (2) when sleep is of insufficient duration during the week (or work days), is catch-up sleep on weekends (or non-work days) important for health? Based on the evidence currently available, panelists agreed to an affirmative response to all 3 questions. CONCLUSIONS: Consistency of sleep onset and offset timing is important for health, safety, and performance. Nonetheless, when insufficient sleep is obtained during the week/work days, weekend/non-work day catch-up sleep may be beneficial.


Assuntos
Privação do Sono , Sono , Humanos , Consenso , Técnica Delphi
2.
Sleep Med Clin ; 17(2): 141-150, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35659069

RESUMO

In this review, we provide a summary of the field of mammalian circadian neurobiology circa 2015. While many additional details have emerged in the intervening 7 years, understanding of the fundamental structure and function of this critical neural system remains intact. Thus, the present review continues to provide a valuable introduction for those seeking an integrative multilevel overview of the circadian system. In brief, the circadian system comprises a coupled network of molecular/cellular- and tissue-level oscillators, hierarchically coordinated by the hypothalamic suprachiasmatic nuclear circadian pacemaker, and entrained by both photic and nonphotic signals.


Assuntos
Ritmo Circadiano , Núcleo Supraquiasmático , Animais , Ritmo Circadiano/fisiologia , Humanos , Mamíferos/fisiologia , Núcleo Supraquiasmático/fisiologia
3.
Front Neurosci ; 16: 889211, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35685770

RESUMO

Sleep disruption is a challenging and exceedingly common physiological state that contributes to a wide range of biochemical and molecular perturbations and has been linked to numerous adverse health outcomes. Modern society exerts significant pressure on the sleep/wake cycle via myriad factors, including exposure to electric light, psychological stressors, technological interconnection, jet travel, shift work, and widespread use of sleep-affecting compounds. Interestingly, recent research has identified a link between the microbiome and the regulation of sleep, suggesting that interventions targeting the microbiome may offer unique therapeutic approaches to challenges posed by sleep disruption. In this study, we test the hypothesis that administration of a prebiotic diet containing galactooligosaccharides (GOS) and polydextrose (PDX) in adult male rats improves sleep in response to repeated sleep disruption and during recovery sleep. We found that animals fed the GOS/PDX prebiotic diet for 4 weeks exhibit increased non-rapid eye movement (NREM) and rapid eye movement (REM) sleep during 5 days of sleep disruption and increased total sleep time during 24 h of recovery from sleep disruption compared to animals fed a control diet, despite similar baseline sleep characteristics. Further, the GOS/PDX prebiotic diet led to significant changes in the fecal microbiome. Consistent with previous reports, the prebiotic diet increased the relative abundance of the species Parabacteroides distasonis, which positively correlated with sleep parameters during recovery sleep. Taken together, these findings suggest that the GOS/PDX prebiotic diet may offer an approach to improve resilience to the physiologic challenge of sleep disruption, in part through impacts on the microbiome.

4.
Eur J Neurosci ; 55(9-10): 2939-2954, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34514665

RESUMO

Affective behaviours and mental health are profoundly affected by disturbances in circadian rhythms. Casein kinase 1 epsilon (CSNK1E) is a core component of the circadian clock. Mice with tau or null mutation of this gene have shortened and lengthened circadian period respectively. Here, we examined anxiety-like, fear, and despair behaviours in both male and female mice of these two different mutants. Compared with wild-type mice, we found reductions in fear and anxiety-like behaviours in both mutant lines and in both sexes, with the tau mutants exhibiting the greatest phenotypic changes. However, the behavioural despair had distinct phenotypic patterns, with markedly less behavioural despair in female null mutants, but not in tau mutants of either sex. To determine whether abnormal light entrainment of tau mutants to 24-h light-dark cycles contributes to these phenotypic differences, we also examined these behaviours in tau mutants on a 20-h light-dark cycle close to their endogenous circadian period. The normalized entrainment restored more wild-type-like behaviours for fear and anxiety, but it induced behavioural despair in tau mutant females. These data show that both mutations of Csnk1e broadly affect fear and anxiety-like behaviours, while the effects on behavioural despair vary with genetics, photoperiod, and sex, suggesting that the mechanisms by which Csnk1e affects fear and anxiety-like behaviours may be similar, but distinct from those affecting behavioural despair. Our study also provides experimental evidence in support of the hypothesis of beneficial outcomes from properly entrained circadian rhythms in terms of the anxiety-like and fear behaviours.


Assuntos
Caseína Quinase 1 épsilon , Relógios Circadianos , Animais , Caseína Quinase 1 épsilon/genética , Ritmo Circadiano/genética , Feminino , Masculino , Camundongos , Atividade Motora , Fotoperíodo
5.
Brain Behav Immun ; 97: 150-166, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34242738

RESUMO

Chronic disruption of rhythms (CDR) impacts sleep and can result in circadian misalignment of physiological systems which, in turn, is associated with increased disease risk. Exposure to repeated or severe stressors also disturbs sleep and diurnal rhythms. Prebiotic nutrients produce favorable changes in gut microbial ecology, the gut metabolome, and reduce several negative impacts of acute severe stressor exposure, including disturbed sleep, core body temperature rhythmicity, and gut microbial dysbiosis. In light of previous compelling evidence that prebiotic diet broadly reduces negative impacts of acute, severe stressors, we hypothesize that prebiotic diet will also effectively mitigate the negative impacts of chronic disruption of circadian rhythms on physiology and sleep/wake behavior. Male, Sprague Dawley rats were fed diets enriched in prebiotic substrates or calorically matched control chow. After 5 weeks on diet, rats were exposed to CDR (12 h light/dark reversal, weekly for 8 weeks) or remained on undisturbed normal light/dark cycles (NLD). Sleep EEG, core body temperature, and locomotor activity were recorded via biotelemetry in freely moving rats. Fecal samples were collected on experimental days -33, 0 (day of onset of CDR), and 42. Taxonomic identification and relative abundances of gut microbes were measured in fecal samples using 16S rRNA gene sequencing and shotgun metagenomics. Fecal primary, bacterially modified secondary, and conjugated bile acids were measured using liquid chromatography with tandem mass spectrometry (LC-MS/MS). Prebiotic diet produced rapid and stable increases in the relative abundances of Parabacteroides distasonis and Ruminiclostridium 5. Shotgun metagenomics analyses confirmed reliable increases in relative abundances of Parabacteroides distasonis and Clostridium leptum, a member of the Ruminiclostridium genus. Prebiotic diet also modified fecal bile acid profiles; and based on correlational and step-wise regression analyses, Parabacteroides distasonis and Ruminiclostridium 5 were positively associated with each other and negatively associated with secondary and conjugated bile acids. Prebiotic diet, but not CDR, impacted beta diversity. Measures of alpha diversity evenness were decreased by CDR and prebiotic diet prevented that effect. Rats exposed to CDR while eating prebiotic, compared to control diet, more quickly realigned NREM sleep and core body temperature (ClockLab) diurnal rhythms to the altered light/dark cycle. Finally, both cholic acid and Ruminiclostridium 5 prior to CDR were associated with time to realign CBT rhythms to the new light/dark cycle after CDR; whereas both Ruminiclostridium 5 and taurocholic acid prior to CDR were associated with NREM sleep recovery after CDR. These results support our hypothesis and suggest that ingestion of prebiotic substrates is an effective strategy to increase the relative abundance of health promoting microbes, alter the fecal bile acid profile, and facilitate the recovery and realignment of sleep and diurnal rhythms after circadian disruption.


Assuntos
Ácidos e Sais Biliares , Prebióticos , Animais , Bacteroidetes , Cromatografia Líquida , Ritmo Circadiano , Dieta , Masculino , RNA Ribossômico 16S/genética , Ratos , Ratos Sprague-Dawley , Sono , Espectrometria de Massas em Tandem
6.
Sci Rep ; 11(1): 7797, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33833255

RESUMO

Reduced NREM sleep in humans is associated with AD neuropathology. Recent work has demonstrated a reduction in NREM sleep in preclinical AD, pointing to its potential utility as an early marker of dementia. We test the hypothesis that reduced NREM delta power and increased tauopathy are associated with shared underlying cortical molecular networks in preclinical AD. We integrate multi-omics data from two extensive public resources, a human Alzheimer's disease cohort from the Mount Sinai Brain Bank (N = 125) reflecting AD progression and a (C57BL/6J × 129S1/SvImJ) F2 mouse population in which NREM delta power was measured (N = 98). Two cortical gene networks, including a CLOCK-dependent circadian network, are associated with NREM delta power and AD tauopathy progression. These networks were validated in independent mouse and human cohorts. Identifying gene networks related to preclinical AD elucidate possible mechanisms associated with the early disease phase and potential targets to alter the disease course.


Assuntos
Doença de Alzheimer/patologia , Córtex Cerebelar/metabolismo , Redes Reguladoras de Genes , Transtornos do Sono-Vigília/patologia , Animais , Estudos de Coortes , Humanos , Camundongos , Camundongos Endogâmicos C57BL
7.
Sleep Health ; 7(3): 293-302, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33795195

RESUMO

Polyphasic sleep is the practice of distributing multiple short sleep episodes across the 24-hour day rather than having one major and possibly a minor ("nap") sleep episode each day. While the prevalence of polyphasic sleep is unknown, anecdotal reports suggest attempts to follow this practice are common, particularly among young adults. Polyphasic-sleep advocates claim to thrive on as little as 2 hours of total sleep per day. However, significant concerns have been raised that polyphasic sleep schedules can result in health and safety consequences. We reviewed the literature to identify the impact of polyphasic sleep schedules (excluding nap or siesta schedules) on health, safety, and performance outcomes. Of 40,672 potentially relevant publications, with 2,023 selected for full-text review, 22 relevant papers were retained. We found no evidence supporting benefits from following polyphasic sleep schedules. Based on the current evidence, the consensus opinion is that polyphasic sleep schedules, and the sleep deficiency inherent in those schedules, are associated with a variety of adverse physical health, mental health, and performance outcomes. Striving to adopt a schedule that significantly reduces the amount of sleep per 24 hours and/or fragments sleep into multiple episodes throughout the 24-hour day is not recommended.


Assuntos
Saúde Mental , Sono , Consenso , Humanos , Prevalência , Adulto Jovem
8.
Sleep ; 44(6)2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33283862

RESUMO

STUDY OBJECTIVES: Sleep deprivation induces systemic inflammation that may contribute to stress vulnerability and other pathologies. We tested the hypothesis that immunization with heat-killed Mycobacterium vaccae NCTC 11659 (MV), an environmental bacterium with immunoregulatory and anti-inflammatory properties, prevents the negative impacts of 5 days of sleep disruption on stress-induced changes in sleep, behavior, and physiology in mice. METHODS: In a 2 × 2 × 2 experimental design, male C57BL/6N mice were given injections of either MV or vehicle on days -17, -10, and -3. On days 1-5, mice were exposed to intermittent sleep disruption, whereby sleep was disrupted for 20 h per day. Immediately following sleep disruption, mice were exposed to 1-h social defeat stress or novel cage (control) conditions. Object location memory (OLM) testing was conducted 24 h after social defeat, and tissues were collected 6 days later to measure inflammatory markers. Sleep was recorded using electroencephalography (EEG) and electromyography (EMG) throughout the experiment. RESULTS: In vehicle-treated mice, only the combination of sleep disruption followed by social defeat (double hit): (1) increased brief arousals and NREM beta (15-30 Hz) EEG power in sleep immediately post-social defeat compared to baseline; (2) induced an increase in the proportion of rapid-eye-movement (REM) sleep and number of state shifts for at least 5 days post-social defeat; and (3) induced hyperlocomotion and lack of habituation in the OLM task. Immunization with MV prevented most of these sleep and behavioral changes. CONCLUSIONS: Immunization with MV ameliorates a stress-induced sleep and behavioral phenotype that shares features with human posttraumatic stress disorder.


Assuntos
Mycobacterium , Transtornos de Estresse Pós-Traumáticos , Animais , Nível de Alerta , Eletroencefalografia , Temperatura Alta , Imunização , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mycobacteriaceae , Fenótipo , Sono
9.
Ecol Evol ; 10(20): 11322-11334, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33144967

RESUMO

Competition for resources often contributes strongly to defining an organism's ecological niche. Endogenous biological rhythms are important adaptations to the temporal dimension of niches, but how other organisms influence such temporal niches has not been much studied, and the role of competition in particular has been even less examined. We investigated how interspecific competition and intraspecific competition for resources shape an organism's activity rhythms.To do this, we simulated communities of one or two species in an agent-based model. Individuals in the simulation move according to a circadian activity rhythm and compete for limited resources. Probability of reproduction is proportional to an individual's success in obtaining resources. Offspring may have variance in rhythm parameters, which allow for the population to evolve over time.We demonstrate that when organisms are arrhythmic, one species will always be competitively excluded from the environment, but the existence of activity rhythms allows niche differentiation and indefinite coexistence of the two species. Two species which are initially active at the same phase will differentiate their phase angle of entrainment over time to avoid each other. When only one species is present in an environment, competition within the species strongly selects for niche expansion through arrhythmicity, but the addition of an interspecific competitor facilitates evolution of increased rhythmic amplitude when combined with additional adaptations for temporal specialization. Finally, if individuals preferentially mate with others who are active at similar times of day, then disruptive selection by intraspecific competition can split one population into two reproductively isolated groups separated in activity time.These simulations suggest that biological rhythms are an effective method to temporally differentiate ecological niches and that competition is an important ecological pressure promoting the evolution of rhythms and sleep. This is the first study to use ecological modeling to examine biological rhythms.

10.
PLoS One ; 15(2): e0229001, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32078624

RESUMO

It has been established in recent years that the gut microbiome plays a role in health and disease, potentially via alterations in metabolites that influence host physiology. Although sleep disruption and gut dysbiosis have been associated with many of the same diseases, studies investigating the gut microbiome in the context of sleep disruption have yielded inconsistent results, and have not assessed the fecal metabolome. We exposed mice to five days of sleep disruption followed by four days of ad libitum recovery sleep, and assessed the fecal microbiome and fecal metabolome at multiple timepoints using 16S rRNA gene amplicons and untargeted LC-MS/MS mass spectrometry. We found global shifts in both the microbiome and metabolome in the sleep-disrupted group on the second day of recovery sleep, when most sleep parameters had recovered to baseline levels. We observed an increase in the Firmicutes:Bacteroidetes ratio, along with decreases in the genus Lactobacillus, phylum Actinobacteria, and genus Bifidobacterium in sleep-disrupted mice compared to control mice. The latter two taxa remained low at the fourth day post-sleep disruption. We also identified multiple classes of fecal metabolites that were differentially abundant in sleep-disrupted mice, some of which are physiologically relevant and commonly influenced by the microbiome. This included bile acids, and inference of microbial functional gene content suggested reduced levels of the microbial bile salt hydrolase gene in sleep-disrupted mice. Overall, this study adds to the evidence base linking disrupted sleep to the gut microbiome and expands it to the fecal metabolome, identifying sleep disruption-sensitive bacterial taxa and classes of metabolites that may serve as therapeutic targets to improve health after poor sleep.


Assuntos
Bactérias , Fezes/microbiologia , Microbioma Gastrointestinal , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Privação do Sono/microbiologia , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Masculino , Camundongos
11.
Front Physiol ; 11: 524833, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33469429

RESUMO

Previous studies demonstrate that Mycobacterium vaccae NCTC 11659 (M. vaccae), a soil-derived bacterium with anti-inflammatory and immunoregulatory properties, is a potentially useful countermeasure against negative outcomes to stressors. Here we used male C57BL/6NCrl mice to determine if repeated immunization with M. vaccae is an effective countermeasure in a "two hit" stress exposure model of chronic disruption of rhythms (CDR) followed by acute social defeat (SD). On day -28, mice received implants of biotelemetric recording devices to monitor 24-h rhythms of locomotor activity. Mice were subsequently treated with a heat-killed preparation of M. vaccae (0.1 mg, administered subcutaneously on days -21, -14, -7, and 27) or borate-buffered saline vehicle. Mice were then exposed to 8 consecutive weeks of either stable normal 12:12 h light:dark (LD) conditions or CDR, consisting of 12-h reversals of the LD cycle every 7 days (days 0-56). Finally, mice were exposed to either a 10-min SD or a home cage control condition on day 54. All mice were exposed to object location memory testing 24 h following SD. The gut microbiome and metabolome were assessed in fecal samples collected on days -1, 48, and 62 using 16S rRNA gene sequence and LC-MS/MS spectral data, respectively; the plasma metabolome was additionally measured on day 64. Among mice exposed to normal LD conditions, immunization with M. vaccae induced a shift toward a more proactive behavioral coping response to SD as measured by increases in scouting and avoiding an approaching male CD-1 aggressor, and decreases in submissive upright defensive postures. In the object location memory test, exposure to SD increased cognitive function in CDR mice previously immunized with M. vaccae. Immunization with M. vaccae stabilized the gut microbiome, attenuating CDR-induced reductions in alpha diversity and decreasing within-group measures of beta diversity. Immunization with M. vaccae also increased the relative abundance of 1-heptadecanoyl-sn-glycero-3-phosphocholine, a lysophospholipid, in plasma. Together, these data support the hypothesis that immunization with M. vaccae stabilizes the gut microbiome, induces a shift toward a more proactive response to stress exposure, and promotes stress resilience.

12.
Sleep ; 42(10)2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31504971

RESUMO

STUDY OBJECTIVES: The present studies examine the effects of NMDAR activation by NYX-2925 diurnal rhythmicity of both sleep and wake as well as emotion. METHODS: Twenty-four-hour sleep EEG recordings were obtained in sleep-deprived and non-sleep-deprived rats. In addition, the day-night cycle of both activity and mood was measured using home cage ultrasonic-vocalization recordings. RESULTS: NYX-2925 significantly facilitated non-REM (NREM) sleep during the lights-on (sleep) period, and this effect persisted for 3 days following a single dose in sleep-deprived rats. Sleep-bout duration and REM latencies were increased without affecting total REM sleep, suggesting better sleep quality. In addition, delta power during wake was decreased, suggesting less drowsiness. NYX-2925 also rescued learning and memory deficits induced by sleep deprivation, measured using an NMDAR-dependent learning task. Additionally, NYX-2925 increased positive affect and decreased negative affect, primarily by facilitating the transitions from sleep to rough-and-tumble play and back to sleep. In contrast to NYX-2925, the NMDAR antagonist ketamine acutely (1-4 hours post-dosing) suppressed REM and non-REM sleep, increased delta power during wake, and blunted the amplitude of the sleep-wake activity rhythm. DISCUSSION: These data suggest that NYX-2925 could enhance behavioral plasticity via improved sleep quality as well as vigilance during wake. As such, the facilitation of sleep by NYX-2925 has the potential to both reduce symptom burden on neurological and psychiatric disorders as well as serve as a biomarker for drug effects through restoration of sleep architecture.


Assuntos
Afeto/fisiologia , Ritmo Circadiano/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Privação do Sono/fisiopatologia , Sono/fisiologia , Compostos de Espiro/farmacologia , Afeto/efeitos dos fármacos , Animais , Ritmo Circadiano/efeitos dos fármacos , Eletroencefalografia/métodos , Masculino , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/agonistas , Sono/efeitos dos fármacos , Privação do Sono/tratamento farmacológico , Compostos de Espiro/uso terapêutico , Vigília/efeitos dos fármacos , Vigília/fisiologia
13.
Microbiome ; 7(1): 113, 2019 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-31399081

RESUMO

BACKGROUND: Space environment imposes a range of challenges to mammalian physiology and the gut microbiota, and interactions between the two are thought to be important in mammalian health in space. While previous findings have demonstrated a change in the gut microbial community structure during spaceflight, specific environmental factors that alter the gut microbiome and the functional relevance of the microbiome changes during spaceflight remain elusive. METHODS: We profiled the microbiome using 16S rRNA gene amplicon sequencing in fecal samples collected from mice after a 37-day spaceflight onboard the International Space Station. We developed an analytical tool, named STARMAPs (Similarity Test for Accordant and Reproducible Microbiome Abundance Patterns), to compare microbiome changes reported here to other relevant datasets. We also integrated the gut microbiome data with the publically available transcriptomic data in the liver of the same animals for a systems-level analysis. RESULTS: We report an elevated microbiome alpha diversity and an altered microbial community structure that were associated with spaceflight environment. Using STARMAPs, we found the observed microbiome changes shared similarity with data reported in mice flown in a previous space shuttle mission, suggesting reproducibility of the effects of spaceflight on the gut microbiome. However, such changes were not comparable with those induced by space-type radiation in Earth-based studies. We found spaceflight led to significantly altered taxon abundance in one order, one family, five genera, and six species of microbes. This was accompanied by a change in the inferred microbial gene abundance that suggests an altered capacity in energy metabolism. Finally, we identified host genes whose expression in the liver were concordantly altered with the inferred gut microbial gene content, particularly highlighting a relationship between host genes involved in protein metabolism and microbial genes involved in putrescine degradation. CONCLUSIONS: These observations shed light on the specific environmental factors that contributed to a robust effect on the gut microbiome during spaceflight with important implications for mammalian metabolism. Our findings represent a key step toward a better understanding the role of the gut microbiome in mammalian health during spaceflight and provide a basis for future efforts to develop microbiota-based countermeasures that mitigate risks to crew health during long-term human space expeditions.


Assuntos
Bactérias/isolamento & purificação , Fezes/microbiologia , Microbioma Gastrointestinal/genética , Voo Espacial , Animais , Bactérias/genética , Feminino , Camundongos , Camundongos Endogâmicos C57BL , RNA Ribossômico 16S/genética
14.
Sleep ; 42(8)2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31070769

RESUMO

STUDY OBJECTIVES: Determine stability of individual differences in executive function, cognitive processing speed, selective visual attention, and maintenance of wakefulness during simulated sustained operations with combined sleep restriction and circadian misalignment. METHODS: Twenty healthy adults (eight female), aged 25.7 (±4.2 SD), body mass index (BMI) 22.3 (±2.1) kg/m2 completed an 18-day protocol twice. Participants maintained habitual self-selected 8-hour sleep schedules for 2 weeks at home prior to a 4-day laboratory visit that included one sleep opportunity per day: 8 hours on night 1, 3 hours on night 2, and 3 hours on mornings 3 and 4. After 3 days of unscheduled sleep at home, participants repeated the entire protocol. Stability and task dependency of individual differences in performance were quantified by intra-class correlation coefficients (ICC) and Kendall's Tau, respectively. RESULTS: Performance on Stroop, Visual Search, and the Maintenance of Wakefulness Test were highly consistent within individuals during combined sleep restriction and circadian misalignment. Individual differences were trait-like as indicated by ICCs (0.54-0.96) classified according to standard criteria as moderate to almost perfect. Individual differences on other performance tasks commonly reported in sleep studies showed fair to almost perfect ICCs (0.22-0.94). Kendall's rank correlations showed that individual vulnerability to sleep restriction and circadian misalignment varied by task and by metric within a task. CONCLUSIONS: Consistent vulnerability of higher-order cognition and maintenance of wakefulness to combined sleep restriction and circadian misalignment has implications for the development of precision countermeasure strategies for workers performing safety-critical tasks, e.g. military, police, health care workers and emergency responders.


Assuntos
Ritmo Circadiano/fisiologia , Cognição/fisiologia , Desempenho Psicomotor/fisiologia , Privação do Sono/fisiopatologia , Transtornos do Sono do Ritmo Circadiano/fisiopatologia , Adulto , Atenção/fisiologia , Função Executiva/fisiologia , Feminino , Humanos , Individualidade , Masculino , Polissonografia , Sono/fisiologia , Análise e Desempenho de Tarefas , Vigília/fisiologia
15.
Sci Rep ; 9(1): 4808, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30886221

RESUMO

In addition to the characteristic motor symptoms, Parkinson's disease (PD) often involves a constellation of sleep and mood symptoms. However, the mechanisms underlying these comorbidities are largely unknown. We have previously reconstructed gene networks in the striatum of a population of (C57BL/6J x A/J) F2 mice and associated the networks to sleep and affective phenotypes, providing a resource for integrated analyses to investigate perturbed sleep and affective functions at the gene network level. Combining this resource with PD-relevant transcriptomic datasets from humans and mice, we identified four networks that showed elevated gene expression in PD patients, including a circadian clock and mitotic network that was altered similarly in mouse models of PD. We then utilized multiple types of omics data from public databases and linked this gene network to postsynaptic dopamine signaling in the striatum, CDK1-modulated transcriptional regulation, and the genetic susceptibility of PD. These findings suggest that dopamine deficiency, a key aspect of PD pathology, perturbs a circadian/mitotic gene network in striatal neurons. Since the normal functions of this network were relevant to sleep and affective behaviors, these findings implicate that dysregulation of functional gene networks may be involved in the emergence of non-motor symptoms in PD. Our analyses present a framework for integrating multi-omics data from diverse sources in mice and humans to reveal insights into comorbid symptoms of complex diseases.


Assuntos
Sintomas Afetivos/genética , Corpo Estriado/patologia , Dopamina/deficiência , Redes Reguladoras de Genes/fisiologia , Doença de Parkinson/genética , Sono/genética , Sintomas Afetivos/patologia , Sintomas Afetivos/fisiopatologia , Animais , Proteína Quinase CDC2/metabolismo , Relógios Circadianos/genética , Corpo Estriado/citologia , Corpo Estriado/fisiopatologia , Conjuntos de Dados como Assunto , Modelos Animais de Doenças , Neurônios Dopaminérgicos/patologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/fisiologia , Predisposição Genética para Doença , Humanos , Masculino , Camundongos , Doença de Parkinson/patologia , Doença de Parkinson/fisiopatologia , Transcrição Gênica
16.
Sci Adv ; 4(7): eaat1294, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30050989

RESUMO

To understand the transcriptomic organization underlying sleep and affective function, we studied a population of (C57BL/6J × 129S1/SvImJ) F2 mice by measuring 283 affective and sleep phenotypes and profiling gene expression across four brain regions. We identified converging molecular bases for sleep and affective phenotypes at both the single-gene and gene-network levels. Using publicly available transcriptomic datasets collected from sleep-deprived mice and patients with major depressive disorder (MDD), we identified three cortical gene networks altered by the sleep/wake state and depression. The network-level actions of sleep loss and depression were opposite to each other, providing a mechanistic basis for the sleep disruptions commonly observed in depression, as well as the reported acute antidepressant effects of sleep deprivation. We highlight one particular network composed of circadian rhythm regulators and neuronal activity-dependent immediate-early genes. The key upstream driver of this network, Arc, may act as a nexus linking sleep and depression. Our data provide mechanistic insights into the role of sleep in affective function and MDD.


Assuntos
Transtorno Depressivo Maior/patologia , Redes Reguladoras de Genes , Privação do Sono/patologia , Animais , Antidepressivos/uso terapêutico , Encéfalo/metabolismo , Córtex Cerebral/metabolismo , Ritmo Circadiano/genética , Transtorno Depressivo Maior/tratamento farmacológico , Transtorno Depressivo Maior/genética , Modelos Animais de Doenças , Genótipo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Locos de Características Quantitativas , Privação do Sono/tratamento farmacológico , Privação do Sono/genética , Transcriptoma
17.
Physiol Behav ; 193(Pt B): 211-217, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29673860

RESUMO

The discovery of the molecular mechanisms underlying the circadian clock, which functions in virtually every cell throughout the body to coordinate biological processes to anticipate and better adapt to daily rhythmic changes in the environment, is one of the major biomedical breakthroughs in the 20th century. Twenty years after this breakthrough, the biomedical community is now at a new frontier to incorporate the circadian clock mechanisms into many areas of biomedical research, as studies continue to reveal an important role of the circadian clock in a wide range of biological functions and diseases. A forefront of this exciting area is the research of interactions between the clock and energy metabolism. In this review, we summarize animal and human studies linking disruptions of the circadian clock, either environmental or genetic, to metabolic dysfunctions associated with obesity, diabetes, and other metabolic disorders. We also discuss how these advances in circadian biology may pave the way to revolutionize clinical practice in the era of precision medicine.


Assuntos
Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Comportamento Alimentar/fisiologia , Doenças Metabólicas/fisiopatologia , Animais , Metabolismo Energético , Humanos , Doenças Metabólicas/terapia , Medicina de Precisão
18.
Sci Total Environ ; 607-608: 1073-1084, 2017 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-28724246

RESUMO

The invention of electric light has facilitated a society in which people work, sleep, eat, and play at all hours of the 24-hour day. Although electric light clearly has benefited humankind, exposures to electric light, especially light at night (LAN), may disrupt sleep and biological processes controlled by endogenous circadian clocks, potentially resulting in adverse health outcomes. Many of the studies evaluating adverse health effects have been conducted among night- and rotating-shift workers, because this scenario gives rise to significant exposure to LAN. Because of the complexity of this topic, the National Toxicology Program convened an expert panel at a public workshop entitled "Shift Work at Night, Artificial Light at Night, and Circadian Disruption" to obtain input on conducting literature-based health hazard assessments and to identify data gaps and research needs. The Panel suggested describing light both as a direct effector of endogenous circadian clocks and rhythms and as an enabler of additional activities or behaviors that may lead to circadian disruption, such as night-shift work and atypical and inconsistent sleep-wake patterns that can lead to social jet lag. Future studies should more comprehensively characterize and measure the relevant light-related exposures and link these exposures to both time-independent biomarkers of circadian disruption and biomarkers of adverse health outcomes. This information should lead to improvements in human epidemiological and animal or in vitro models, more rigorous health hazard assessments, and intervention strategies to minimize the occurrence of adverse health outcomes due to these exposures.


Assuntos
Ritmo Circadiano/efeitos da radiação , Iluminação , Jornada de Trabalho em Turnos , Sono/efeitos da radiação , Animais , Eletricidade , Humanos , Luz
19.
Am J Physiol Endocrinol Metab ; 312(5): E369-E380, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28143856

RESUMO

Over the past decade, a large body of literature has demonstrated that disruptions of the endogenous circadian clock, whether environmental or genetic, lead to metabolic dysfunctions that are associated with obesity, diabetes, and other metabolic disorders. The phrase, "It is not only what you eat and how much you eat, but also when you eat" sends a simple message about circadian timing and body weight regulation. Communicating this message to clinicians and patients, while also elucidating the neuroendocrine, molecular, and genetic mechanisms underlying this phrase is essential to embrace the growing knowledge of the circadian impact on metabolism as a part of healthy life style as well as to incorporate it into clinical practice for improvement of overall human health. In this review, we discuss findings from animal models, as well as epidemiological and clinical studies in humans, which collectively promote the awareness of the role of circadian clock in metabolic functions and dysfunctions.


Assuntos
Ritmo Circadiano/fisiologia , Ingestão de Alimentos/fisiologia , Metabolismo Energético/fisiologia , Comportamento Alimentar/fisiologia , Doenças Metabólicas/fisiopatologia , Obesidade/fisiopatologia , Animais , Medicina Baseada em Evidências , Humanos , Doenças Metabólicas/dietoterapia , Modelos Biológicos , Obesidade/dietoterapia , Fatores de Tempo
20.
Science ; 354(6315): 992-993, 2016 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-27885003

RESUMO

The last 20 years have seen the rapid evolution of our understanding of the molecular genes and networks that enable almost all forms of life to generate 24-hour-or circadian-rhythms. One finding has been particularly exciting: that the molecular circadian clock resides in almost all of the cells of the body and that the clock regulates the timing of many cellular and signaling pathways associated with multiple disease states. Such advances represent a new frontier for medicine: circadian medicine.


Assuntos
Relógios Circadianos/genética , Doença/genética , Animais , Cricetinae , Redes Reguladoras de Genes , Avós , Humanos , Medicina/tendências , Camundongos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...