Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (124)2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28654043

RESUMO

Kinase activity is crucial for a plethora of cellular functions, including cell proliferation, differentiation, migration, and apoptosis. During early embryonic development, kinase activity is highly dynamic and widespread across the embryo. Pharmacological and genetic approaches are commonly used to probe kinase activities. Unfortunately, it is challenging to achieve superior spatial and temporal resolution using these strategies. Furthermore, it is not feasible to control the kinase activity in a reversible fashion in live cells and multicellular organisms. Such a limitation remains a bottleneck for achieving a quantitative understanding of kinase activity during development and differentiation. This work presents an optogenetic strategy that takes advantage of a bicistronic system containing photoactivatable proteins Arabidopsis thaliana cryptochrome 2 (CRY2) and the N-terminal domain of cryptochrome-interacting basic-helix-loop-helix (CIBN). Reversible activation of the mitogen-activated protein kinase (MAPK) signaling pathway is achieved through light-mediated protein translocation in live cells. This approach can be applied to mammalian cell cultures and live vertebrate embryos. This bicistronic system can be generalized to control the activity of other kinases with similar activation mechanisms and can be applied to other model systems.


Assuntos
Diferenciação Celular/fisiologia , Embrião não Mamífero/enzimologia , Desenvolvimento Embrionário/fisiologia , Luz , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Optogenética/métodos , Animais , Proteínas de Arabidopsis/metabolismo , Diferenciação Celular/genética , Cricetinae , Desenvolvimento Embrionário/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Transporte Proteico , Transdução de Sinais , Xenopus/embriologia
2.
Development ; 143(21): 4085-4094, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27697903

RESUMO

A limited number of signaling pathways are repeatedly used to regulate a wide variety of processes during development and differentiation. The lack of tools to manipulate signaling pathways dynamically in space and time has been a major technical challenge for biologists. Optogenetic techniques, which utilize light to control protein functions in a reversible fashion, hold promise for modulating intracellular signaling networks with high spatial and temporal resolution. Applications of optogenetics in multicellular organisms, however, have not been widely reported. Here, we create an optimized bicistronic optogenetic system using Arabidopsis thaliana cryptochrome 2 (CRY2) protein and the N-terminal domain of cryptochrome-interacting basic-helix-loop-helix (CIBN). In a proof-of-principle study, we develop an optogenetic Raf kinase that allows reversible light-controlled activation of the Raf/MEK/ERK signaling cascade. In PC12 cells, this system significantly improves light-induced cell differentiation compared with co-transfection. When applied to Xenopus embryos, this system enables blue light-dependent reversible Raf activation at any desired developmental stage in specific cell lineages. Our system offers a powerful optogenetic tool suitable for manipulation of signaling pathways with high spatial and temporal resolution in a wide range of experimental settings.


Assuntos
Diferenciação Celular/genética , Desenvolvimento Embrionário/genética , Optogenética/métodos , Fosfotransferases/metabolismo , Animais , Arabidopsis , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Criptocromos/química , Criptocromos/genética , Luz , Sistema de Sinalização das MAP Quinases , Células PC12 , Fosforilação , Fosfotransferases/genética , Ratos , Transdução de Sinais , Transgenes , Xenopus , Quinases raf/metabolismo
3.
Methods Cell Biol ; 121: 231-42, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24560513

RESUMO

The extracellular matrix (ECM) is a dynamic and heterogeneous environment that controls many aspects of cell behavior. Not surprisingly, many different approaches have focused on creating model substrates that recapitulate the biomolecular, topographical, and mechanical properties of the ECM for in vitro studies of cell behavior. This chapter details a general, versatile method for the spatially controlled deposition of multiple biomolecules onto both planar and topographically complex support structures with micrometer resolution. This approach is based upon the well-understood photochemical UV crosslinking of benzophenone (BP) to solution-phase biomolecules. This is a molecularly general strategy that can be utilized to immobilize biomolecules onto any surface prefunctionalized with BP. Examples described herein include modification of planar and corrugated glass substrates as well as collagen-glycosaminoglycan biomaterials configured either as highly porous scaffolds or nonporous membranes with a variety of biomolecular targets, including proteins, glycoproteins, and carbohydrates.


Assuntos
Materiais Revestidos Biocompatíveis , Células Precursoras de Granulócitos/fisiologia , Migração e Rolagem de Leucócitos/fisiologia , Osteoblastos/fisiologia , Linfócitos T/fisiologia , Células 3T3 , Animais , Benzofenonas/química , Adesão Celular/fisiologia , Técnicas de Cultura de Células/métodos , Colágeno/química , Matriz Extracelular/fisiologia , Fibronectinas/metabolismo , Vidro/química , Glicosaminoglicanos/química , Células HL-60 , Humanos , Células Jurkat , Glicoproteínas de Membrana/farmacologia , Camundongos , Selectina-P/farmacologia , Fotoquímica , Polietilenoglicóis/química , Estresse Mecânico , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...