Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Opin Insect Sci ; 47: 82-89, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34044181

RESUMO

The insect renal (Malpighian) tubules are functionally homologous to the mammalian kidney. Accumulating evidence indicates that renal tubule crystals form in a manner similar to mammalian kidney stones. In Drosophila melanogaster, crystals can be induced by diet, toxic substances, or genetic mutations that reflect circumstances influencing or eliciting kidney stones in mammals. Incredibly, many mammalian proteins have distinct homologs in Drosophila, and the function of most homologs have been demonstrated to recapitulate their mammalian and human counterparts. Here, we discuss the present literature establishing Drosophila as a nephrolithiasis model. This insect model may be used to investigate and understand the etiology of kidney stone diseases, especially with regard to calcium oxalate, calcium phosphate and xanthine or urate crystallization.


Assuntos
Túbulos de Malpighi , Nefrolitíase , Animais , Oxalato de Cálcio , Modelos Animais de Doenças , Drosophila melanogaster/genética
2.
Adv Physiol Educ ; 44(3): 482-487, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32795129

RESUMO

Many complex physiological processes can be introduced and explored using the framework of the neuromuscular junction (NMJ), including neurotransmitter release, membrane depolarization, and ion channel activity. While traditionally used instructional tools such as static complex drawings are useful, these images can be incomplete physiological representations due to the lack of physically moving parts. As a result, they often misrepresent the complexity of physiological phenomena to students. We describe an effort to create a more accurate, dynamic representation of the NMJ to enhance instruction in an undergraduate anatomy and physiology course. We sought to create a unique and memorable moving diagram that combines elements of static images with moving parts. To evaluate the impact of the dynamic model, students were asked about their understanding of the NMJ before and after exposure to the model. In addition, students were asked for attitudinal responses to the model and their preferred method of instruction. Analysis of student responses indicated that students enjoyed the model, although they also had concerns about the speed of the simulated ion movement being too fast. The model has also served as an informal science education art installation in presentations for prospective students, stakeholders in the broader community, including local and statewide politicians, the University president and board of trustees, donors, and other regional economic and educational leaders.


Assuntos
Junção Neuromuscular , Fisiologia , Estudantes , Universidades , Compreensão , Avaliação Educacional , Humanos , Fisiologia/educação , Estudos Prospectivos
3.
Proc Natl Acad Sci U S A ; 117(3): 1779-1787, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31907321

RESUMO

Insects are highly successful, in part through an excellent ability to osmoregulate. The renal (Malpighian) tubules can secrete fluid faster on a per-cell basis than any other epithelium, but the route for these remarkable water fluxes has not been established. In Drosophila melanogaster, we show that 4 genes of the major intrinsic protein family are expressed at a very high level in the fly renal tissue: the aquaporins (AQPs) Drip and Prip and the aquaglyceroporins Eglp2 and Eglp4 As predicted from their structure, and by their transport function by expressing these proteins in Xenopus oocytes, Drip, Prip, and Eglp2 show significant and specific water permeability, whereas Eglp2 and Eglp4 show very high permeability to glycerol and urea. Knockdowns of any of these genes result in impaired hormone-induced fluid secretion. The Drosophila tubule has 2 main secretory cell types: active cation-transporting principal cells, wherein the aquaglyceroporins localize to opposite plasma membranes, and small stellate cells, the site of the chloride shunt conductance, with these AQPs localizing to opposite plasma membranes. This suggests a model in which osmotically obliged water flows through the stellate cells. Consistent with this model, fluorescently labeled dextran, an in vivo marker of membrane water permeability, is trapped in the basal infoldings of the stellate cells after kinin diuretic peptide stimulation, confirming that these cells provide the major route for transepithelial water flux. The spatial segregation of these components of epithelial water transport may help to explain the unique success of the higher insects in regulating their internal environments.


Assuntos
Transporte Biológico/fisiologia , Drosophila melanogaster/fisiologia , Túbulos Renais/metabolismo , Água/metabolismo , Animais , Aquagliceroporinas/genética , Aquagliceroporinas/metabolismo , Aquaporinas/genética , Aquaporinas/metabolismo , Permeabilidade da Membrana Celular , Cloretos/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Feminino , Técnicas de Silenciamento de Genes , Túbulos Renais/citologia , Masculino , Túbulos de Malpighi/metabolismo , Modelos Animais , Oócitos/metabolismo , Osmorregulação , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA