Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Turk J Biol ; 48(1): 13-23, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38665777

RESUMO

Background/aim: Early detection and treatment are crucial in combating malignant melanoma. Src is an important therapeutic target in melanoma due to its association with cancer progression. However, developing effective Src-targeting drugs remains challenging and personalized medicine relies on biomarkers and targeted therapies for precise and effective treatment. This study focuses on Si162, a newly synthesized c-Src inhibitor, to identify reliable biomarkers for predicting Si162 sensitivity and explore associated biological characteristics and pathways in melanoma cells. Materials and methods: Primary melanoma cells (M1, M21, M24, M84, M133, M307, and M2025) were obtained from patients diagnosed with melanoma. Si162 cytotoxicity tests were performed using luminescent adenosine triphosphate detection and the half-maximal inhibitory concentration (IC50) values were calculated. Gene expression profiles were analyzed using microarray-based gene expression data. Differentially expressed genes between the resistant and sensitive groups were identified using Pearson correlation analysis. Gene coexpression, interactions, and pathways were investigated through clustering, network, and pathway analyses. Biological functions were examined using the Database for Annotation, Visualization, and Integrated Discovery. Molecular pathways associated with different responses to Si162 were identified using gene set enrichment analysis. The gene expressions were validated using reverse transcription-quantitative polymerase chain reaction. Results: The cells revealed significant differences in response to Si162 based on the IC50 values (p < 0.05). A total of 36 differentially expressed genes associated with Si162 susceptibility were identified. Distinct expression patterns between the sensitive and resistant groups were observed in 9 genes (LRBA, MGMT, CAND1, ADD1, SETD2, CNTN6, FGF18, C18orf25, and RPL13). Coexpression among the differentially expressed genes was highlighted, and 9 genes associated with molecular pathways, including EMT, transforming growth factor-beta (TGF-ß) signaling, and ribosomal protein synthesis, between groups. Genes involved in dysregulated immune response were observed in the resistant group. The involvement of 5 genes (ADD1, CNTN6, FGF18, C18orf25, and RPL13) in Si162 resistance was confirmed through qRT-PCR validation. Conclusion: These findings contribute to our understanding of the underlying biological differences among melanoma cells and suggest potential biomarkers and pathways associated with Si162 response and resistance.

2.
Heliyon ; 9(9): e19743, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37810000

RESUMO

As in the case of cancer, the risk of infection increases when the host's immune system is not working properly. It has been shown that toxins produced by the bacteria responsible for bacterial infections can alter the properties of cancer cells as well as their sensitivity to chemotherapy agents. Staphylococcus aureus (S. aureus) is one of the most prevalent pathogens in acute myeloid leukemia (AML) patients and it produces several virulence factors, including Staphylococcal enterotoxin A (SEA) and Staphylococcal enterotoxin B (SEB). Cytotoxicity, transwell migration, invasion assays, and various transcriptomic and gene set enrichment (GSE) analyses were used to determine how SEA and SEB alter cell proliferation, migration, invasion, and Cytarabine (Cyt) resistance in AML cell lines. The treatment of AML cell lines with SEA/SEB caused an increase in cell proliferation and Cyt resistance. Toxins enhanced the proclivity of cells to migrate and invade, with around 50% of cells in the presence of SEA and SEB. Transcriptomic and gene set enrichment analyses, and subsequent PCR validations showed dysregulation of immune related genes and genesets. Apparently, this allows AML cells to escape and survive the undesirable environment created by toxins, possibly via the ER stress signaling pathway. Therefore, SEA and SEB can significantly alter the characteristics of AML cancer cells and evaluation of alterations in responsible immune genes and pathways may be crucial for controlling the progression of cancer. In addition, our results suggest that there may be a strong interaction between the immune related pathways and the ER signaling pathway.

3.
Cell Mol Biol (Noisy-le-grand) ; 69(4): 37-45, 2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37329550

RESUMO

Supplemental probiotics available without a doctor's prescription have become a booming global market in past few years. Medical research has shown that probiotics may benefit both healthy people and cancer patients by improving their immune systems and digestive health. Even though they seldom produce serious side effects, it's important to note that they are generally safe to use. But further investigation into the role of probiotics and gut microbes in the etiology of colorectal cancer is required. Here we used computational methods to identify the transcriptome alterations induced by probiotic treatment of colon cells. The impacts of genes with substantially altered expression were assessed in relation to the progression of colorectal cancer. Following probiotic treatment, substantial and high-level changes in the expression of genes were determined. BATF2, XCL2/XCL1, RCVRN and, FAM46B were up-regulated while IL13RA2, CEMIP, CUL9, Cand XCL6, PTCH2 were down-regulated in probiotic-treated colonic tissue and tumor samples. Also, immune-related pathways were determined that contribute to colorectal cancer formation and progression, as well as genes with opposing roles. This suggests that the length and dosage of probiotic use, in addition to the specific bacterial strain, maybe the most important determinants in the association between probiotics and colorectal cancer.


Assuntos
Neoplasias Colorretais , Probióticos , Humanos , Transcriptoma , Probióticos/uso terapêutico , Neoplasias Colorretais/genética
4.
Turk J Med Sci ; 53(5): 1194-1204, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38813031

RESUMO

Background/aim: The clinical presentation of pediatric coronavirus disease 2019 (COVID-19) is associated with a milder disease course than the adult COVID-19 syndrome. The disease course of COVID-19 has three clinicobiological phases: initiation, propagation, and complication. This study aimed to assess the pathobiological alterations affecting the distinct clinical courses of COVID-19 in pediatric age groups versus the adult population. We hypothesized that critical biogenomic marker expressions drive the mild clinical presentations of pediatric COVID-19. Materials and methods: Blood samples were obtained from 72 patients with COVID-19 hospitalized at Ankara City Hospital between March and July 2021. Peripheral blood mononuclear cells were isolated using Ficoll-Paque and density-gradient sedimentation. The groups were compared using a t-test and limma analyses. Mean standardized gene expression levels were used to hierarchically cluster genes employing Euclidean Gene Cluster 3.0. The expression levels of identified genes were determined using reverse transcription-polymerase chain reaction. Results: This study found that ANPEP gene expression was significantly downregulated in the pediatric group (p < 0.05, FC: 1.57) and IGF2R gene expression was significantly upregulated in the adult group (p < 0.05, FC: 2.98). The study results indicated that the expression of critical biogenomic markers, such as the first-phase (ACE2 and ANPEP) and second-phase (EGFR and IGF2R) receptor genes, was crucial in the genesis of mild clinical presentations of pediatric COVID-19. ANPEP gene expression was lower in pediatric COVID-19. Conclusion: The interrelationship between the ANPEP and ACE2 genes may prevent the progression of COVID-19 from initiation to the propagating phase in pediatric patients. High IGF2R gene expression could potentially contribute to a protective effect and may be a contributing factor for the mild clinical course observed in pediatric patients.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/genética , Criança , Masculino , Feminino , Adulto , Pré-Escolar , Adolescente , Pessoa de Meia-Idade , Fatores Etários
5.
Open Med (Wars) ; 17(1): 1495-1506, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36213442

RESUMO

Acute myeloid leukemia (AML) is the most heterogeneous hematological disorder and blast cells need to fight against immune system. Natural killer (NK) cells can elicit fast anti-tumor responses in response to surface receptors of tumor cells. NK-cell activity is often impaired in the disease, and there is a risk of insufficient tumor suppression and progression. The aim of this study is to assess the dysfunction of NK cells in AML patients via focusing on two important pathways. We obtained single-cell RNA-sequencing data from NK cells obtained from healthy donors and AML patients. The data were used to perform a wide variety of approaches, including DESeq2 (version 3.9), limma (version 3.26.8) power differential expression analyses, hierarchical clustering, gene set enrichment, and pathway analysis. ATP6AP2, LNPEP, PREP, IGF2R, CTSA, and THOP1 genes were found to be related to the renin-angiotensin system (RAS) family, while DPP3, GLRA3, CRCP, CHRNA5, CHRNE, and CHRNB1 genes were associated with the neurotransmitter pathways. The determined genes are expressed within different patterns in the AML and healthy groups. The relevant molecular pathways and clusters of genes were identified, as well. The cross-talks of NK-cell dysfunction in relation to the RAS and neurotransmitters seem to be important in the genesis of AML.

6.
Turk J Med Sci ; 51(3): 1001-1011, 2021 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-33705636

RESUMO

Background/aim: COVID-19 syndrome due to the SARS-CoV-2 virus is a currently challenging situation ongoing worldwide. Since the current pandemic of the SARS-CoV-2 virus is a great concern for everybody in the World, the frequently asked question is how and when the COVID-19 process will be concluded. The aim of this paper is to propose hypotheses in order to answer this essential question. As recently demonstrated, SARS-CoV-2 RNAs can be reverse-transcribed and integrated into the human genome. Our main hypothesis is that the ultimate aim of the SARS-CoV-2 virus is the incorporation to human genome and being an element of the intestinal virobiota. Materials and methods: We propose that the SARS-CoV-2 genomic incorporation to be a part of human virobiota is essentially based on three pathobiological phases which are called as the 'induction', 'consolidation', and 'maintenance phases'. The phase of 'recurrence' complicates any of these three disease phases based on the viral load, exposure time, and more contagious strains and/or mutants. We have performed the 'random walk model' in order to predict the community transmission kinetics of the virus. Results: Chimerism-mediated immunotherapy at the individual and community level with the help of vaccination seems to be the only option for ending the COVID-19 process. After the integration of SARS-CoV-2 virus into the human genome via the induction, consolidation, and maintenance phases as an element of intestinal virobiota, the chimerism would be concluded. The 'viral load', the 'genomic strain of the SARS-CoV-2', and 'host immune reaction against the SARS-CoV-2' are the hallmarks of this long journey. Conclusion: Elucidation of the functional viral dynamics will be helpful for disease management at the individual- and community- based long-term management strategies.


Assuntos
COVID-19/transmissão , Transmissão de Doença Infecciosa/estatística & dados numéricos , Pandemias , SARS-CoV-2 , COVID-19/epidemiologia , Humanos , Estudos Retrospectivos , Turquia/epidemiologia
7.
PLoS One ; 15(11): e0242497, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33237942

RESUMO

Despite the availability of various treatment protocols, response to therapy in patients with Acute Myeloid Leukemia (AML) remains largely unpredictable. Transcriptomic profiling studies have thus far revealed the presence of molecular subtypes of AML that are not accounted for by standard clinical parameters or by routinely used biomarkers. Such molecular subtypes of AML are predicted to vary in response to chemotherapy or targeted therapy. The Renin-Angiotensin System (RAS) is an important group of proteins that play a critical role in regulating blood pressure, vascular resistance and fluid/electrolyte balance. RAS pathway genes are also known to be present locally in tissues such as the bone marrow, where they play an important role in leukemic hematopoiesis. In this study, we asked if the RAS genes could be utilized to predict drug responses in patients with AML. We show that the combined in silico analysis of up to five RAS genes can reliably predict sensitivity to Doxorubicin as well as Etoposide in AML. The same genes could also predict sensitivity to Doxorubicin when tested in vitro. Additionally, gene set enrichment analysis revealed enrichment of TNF-alpha and type-I IFN response genes among sensitive, and TGF-beta and fibronectin related genes in resistant cancer cells. However, this does not seem to reflect an epithelial to mesenchymal transition per se. We also identified that RAS genes can stratify patients with AML into subtypes with distinct prognosis. Together, our results demonstrate that genes present in RAS are biomarkers for drug sensitivity and the prognostication of AML.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Medicina de Precisão , Sistema Renina-Angiotensina/genética , Biomarcadores , Linhagem Celular Tumoral , Simulação por Computador , Citarabina/administração & dosagem , Citarabina/farmacologia , Conjuntos de Dados como Assunto , Doxorrubicina/administração & dosagem , Doxorrubicina/farmacologia , Etoposídeo/administração & dosagem , Etoposídeo/farmacologia , Ontologia Genética , Humanos , Concentração Inibidora 50 , Estimativa de Kaplan-Meier , Leucemia Mieloide Aguda/classificação , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/mortalidade , Dinâmica não Linear , Prognóstico , Reação em Cadeia da Polimerase em Tempo Real , Tretinoína/administração & dosagem , Tretinoína/farmacologia
8.
J Renin Angiotensin Aldosterone Syst ; 21(2): 1470320320928872, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32490715

RESUMO

INTRODUCTION: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a recently identified coronavirus family member that triggers a respiratory disease similar to severe acute respiratory syndrome coronavirus (SARS-CoV). SARS-CoV and SARS-CoV-2 are very similar to each other in many respects, such as structure, genetics, and pathobiology. We hypothesized that coronaviruses could affect pulmonary tissues via integration with the critical immune genes after their interaction with renin-angiotensin system (RAS) elements. The aim of the present bioinformatics study was to assess expression changes of the RAS and non-RAS genes, particularly immune response genes, in the lung epithelial cells after infection with SARS-CoV. METHODS: Linear regression, hierarchical clustering, pathway analysis, and network analysis were performed using the E-GEOD-17400 data set. RESULTS: The whole-genome expression data of the lung epithelial cells infected with SARS-CoV for 12, 24, and 48 hours were analyzed, and a total of 15 RAS family and 29 immune genes were found to be highly correlated with the exposure time to the virus in the studied groups. CONCLUSION: RAS genes are important at the initiation of the infections caused by coronavirus family members and may have a strong relationship with the exchange of immune genes in due course following the infection.


Assuntos
Betacoronavirus/fisiologia , Brônquios/patologia , Infecções por Coronavirus/genética , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Inflamação/genética , Pneumonia Viral/genética , Sistema Renina-Angiotensina/genética , COVID-19 , Análise por Conglomerados , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Genoma Humano , Humanos , Inflamação/patologia , Modelos Lineares , Pandemias , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , SARS-CoV-2
9.
J Renin Angiotensin Aldosterone Syst ; 20(2): 1470320319851310, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31117912

RESUMO

INTRODUCTION: Bone marrow renin-angiotensin system(RAS) modulates acute myeloid leukaemia(AML).The aim of this study is to clarify the relationships between RAS and AML, and to show the effect of losartan and doxorubicin treatment in AML cell lines. METHODS: AML cell lines including CESS, HL-60, MO-1, P31/FUJ, GDM-1 and KASUMI-3 were used as models in this study. RESULTS: After treating the six AML cell lines with a combination of losartan and doxorubicin, they were divided into two groups based on their behaviour: one became more sensitive to drug treatment (Group A) and the other had no change observed in behaviour after drug treatment (Group B). In silico analyses showed that Group A is involved in cellular apoptosis, while Group B is involved in tumour angiogenesis further supporting the in vitro results. CONCLUSION: The combined treatment of the AML cell lines with losartan and doxorubicin resulted in an increase in sensitivity of some of the cell lines. Those leukaemic cells are modulated via the induction of apoptosis, whereas the other cells resistant to the drug treatment are closely related to tumour angiogenesis indicating that RAS-AT1R seems to be differently expressed in different leukaemic blast cells and tumour microenvironments. Pharmaco-biological actions of RAS inhibitors may be different in distinct leukaemic cells based on the pathological behaviour of AML genomic subtypes.


Assuntos
Bloqueadores do Receptor Tipo 1 de Angiotensina II/uso terapêutico , Antineoplásicos/uso terapêutico , Doxorrubicina/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Losartan/uso terapêutico , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Losartan/farmacologia , Transdução de Sinais/efeitos dos fármacos
10.
Turk J Med Sci ; 49(2): 661-674, 2019 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-30997981

RESUMO

Background/aim: Ruxolitinib, a JAK/STAT signaling pathway inhibitor targeted drug, has been approved for the controlling of disease symptoms and splenomegaly in patients with myeloproliferative neoplastic diseases. Recently, it has been proposed that ruxolitinib-induced JAK/STAT pathway inhibition in myelofibrosis is associated with an elevated frequency of aggressive B-cell lymphomas. However, the biological basis and significance of this pharmacobiological adverse event is unknown. The aim of this bioinformatics study is to detect any possible confounding effects of ruxolitinib on the genesis of lymphoproliferative disorders. Materials and methods: The gene expression data were retrieved from the E-MTAB-783 Cancer Genome Project database. Gene expression data for all available genes in 26 cell lines belonging to various types of lymphomas were chosen for use in this in silico analysis. Results: We identified genes that were significant in developing resistance to ruxolitinib in lymphoma cell lines. Conclusion: Based on the results of our present study, ruxolitinib may potentially lead to the pathological expression of the transcription factors important in lymphoma genesis, neoplastic commitment on the progenitor lymphoid cells, inhibition of repressor transcriptions protective for lymphoma development, inhibition of apoptosis, promotion of neoplastic proliferation, transcriptional activation, and proliferation of malignant neoplastic B cells.


Assuntos
Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inibidores de Janus Quinases/efeitos adversos , Transtornos Linfoproliferativos/induzido quimicamente , Transtornos Linfoproliferativos/genética , Pirazóis/efeitos adversos , Transdução de Sinais/efeitos dos fármacos , Apoptose , Linhagem Celular Tumoral , Simulação por Computador , Humanos , Janus Quinase 1 , Janus Quinase 2 , Inibidores de Janus Quinases/farmacologia , Nitrilas , Pirazóis/farmacologia , Pirimidinas
11.
SAGE Open Med ; 5: 2050312116689519, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28293423

RESUMO

OBJECTIVE: Ankaferd hemostat is the first topical hemostatic agent about the red blood cell-fibrinogen relations tested in the clinical trials. Ankaferd hemostat consists of standardized plant extracts including Alpinia officinarum, Glycyrrhiza glabra, Thymus vulgaris, Urtica dioica, and Vitis vinifera. The aim of this study was to determine the effect of Ankaferd hemostat on viability of melanoma cell lines. METHODS: Dissimilar melanoma cell lines and primary cells were used in this study. These cells were treated with different concentrations of Ankaferd hemostat to assess the impact of different dosages of the drug. All cells treated with different concentrations were incubated for different time intervals. After the data had been obtained, one-tailed T-test was used to determine whether the Ankaferd hemostat would have any significant inhibitory impact on cell growth. RESULTS: We demonstrated in this study that cells treated with Ankaferd hemostat showed a significant decrease in cell viability compared to control groups. The cells showed different resistances against Ankaferd hemostat which depended on the dosage applied and the time treated cells had been incubated. We also demonstrated an inverse relationship between the concentration of the drug and the incubation time on one hand and the viability of the cells on the other hand, that is, increasing the concentration of the drug and the incubation time had a negative impact on cell viability. CONCLUSION: The findings in our study contribute to our knowledge about the anticancer impact of Ankaferd hemostat on different melanoma cells.

12.
Turk J Haematol ; 33(4): 286-292, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27095044

RESUMO

OBJECTIVE: Multiple myeloma (MM) is currently incurable due to refractory disease relapse even under novel anti-myeloma treatment. In silico studies are effective for key decision making during clinicopathological battles against the chronic course of MM. The aim of this present in silico study was to identify individual genes whose expression profiles match that of the one generated by cytotoxicity experiments for bortezomib. MATERIALS AND METHODS: We used an in silico literature mining approach to identify potential biomarkers by creating a summarized set of metadata derived from relevant information. The E-MTAB-783 dataset containing expression data from 789 cancer cell lines including 8 myeloma cell lines with drug screening data from the Wellcome Trust Sanger Institute database obtained from ArrayExpress was "Robust Multi-array analysis" normalized using GeneSpring v.12.5. Drug toxicity data were obtained from the Genomics of Drug Sensitivity in Cancer project. In order to identify individual genes whose expression profiles matched that of the one generated by cytotoxicity experiments for bortezomib, we used a linear regression-based approach, where we searched for statistically significant correlations between gene expression values and IC50 data. The intersections of the genes were identified in 8 cell lines and used for further analysis. RESULTS: Our linear regression model identified 73 genes and some genes expression levels were found to very closely correlated with bortezomib IC50 values. When all 73 genes were used in a hierarchical cluster analysis, two major clusters of cells representing relatively sensitive and resistant cells could be identified. Pathway and molecular function analysis of all the significant genes was also investigated, as well as the genes involved in pathways. CONCLUSION: The findings of our present in silico study could be important not only for the understanding of the genomics of MM but also for the better arrangement of the targeted anti-myeloma therapies, such as bortezomib.


Assuntos
Antineoplásicos/farmacologia , Bortezomib/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Mieloma Múltiplo/genética , Inibidores de Proteassoma/farmacologia , Transcriptoma , Biomarcadores , Linhagem Celular Tumoral , Análise por Conglomerados , Biologia Computacional/métodos , Bases de Dados de Ácidos Nucleicos , Resistencia a Medicamentos Antineoplásicos/genética , Perfilação da Expressão Gênica , Humanos , Concentração Inibidora 50 , Anotação de Sequência Molecular , Mieloma Múltiplo/tratamento farmacológico
13.
Protein J ; 34(6): 434-43, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26614503

RESUMO

Hypericin is a photosensitizer compound used in the photodynamic therapy (PDT). PDT is an alternative cancer treatment strategy whose function is dependent on the photosensitizers accumulating selectively in tumor cells and following visible or infra-red light induced activation lead to the apoptosis/necrosis of the tumor cells via the formation of reactive oxygen species. Thus, the cellular redox balance is essential for the efficacy of PDT. Among the protective enzyme systems glutathione S-transferases (GST, E.C.2.5.1.18) function in detoxification, protection against oxidative stress and intracellular transport of molecules. It is known that isoenzymes of GST and especially GST-pi is increased in cancer cells and it plays very important functions in the development of resistance to anticancer drugs. Since photosensitizers are used intravenously, it is important to elucidate the effects of photosensitizers on the erythrocyte enzymes. The aim of the present study was to investigate the impact of hypericin on human erythrocyte GST-pi (heGST-pi). Purification yield of 71% and purification fold of 2550 were achieved by using conventional chromatographic methods. The specific activity of the enzyme is found as 51 U/mg protein. Hypericin inhibited heGST-pi in a dose dependent manner and inhibition was biphasic. Noncompetitive type of inhibition was observed with both substrates, GSH and CDNB. The inhibitory constant (K i ) values obtained from Lineweaver-Burk, Dixon, secondary plots; slope and y-intercept versus 1/S (substrate) and from non-linear regression analysis were in good correlation: K i (GSH) was calculated as 0.19 ± 0.01 µM and K i (CDNB) as 0.26 ± 0.03 µM.


Assuntos
Antineoplásicos/farmacologia , Eritrócitos/enzimologia , Glutationa S-Transferase pi/antagonistas & inibidores , Glutationa S-Transferase pi/isolamento & purificação , Perileno/análogos & derivados , Antracenos , Glutationa S-Transferase pi/química , Humanos , Cinética , Perileno/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...