Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Cell Physiol ; 324(6): C1274-C1294, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37154489

RESUMO

Skeletal muscle memory is an exciting phenomenon gaining significant traction across several scientific communities, among exercise practitioners, and the public. Research has demonstrated that skeletal muscle tissue can be "primed" by earlier positive encounters with exercise training that can enhance adaptation to later retraining, even following significant periods of exercise cessation or detraining. This review will describe and discuss the most recent research investigating the underlying mechanisms of skeletal muscle memory: 1) "cellular" muscle memory and, 2) "epigenetic" muscle memory, as well as emerging evidence of how these theories may work in synergy. We will discuss both "positive" and "negative" muscle memory and highlight the importance of investigating muscle memory for optimizing exercise interventions and training programs as well as the development of therapeutic strategies for counteracting muscle wasting conditions and age-related muscle loss. Finally, important directions emerging in the field will be highlighted to advance the next generation of studies in skeletal muscle memory research into the future.


Assuntos
Exercício Físico , Músculo Esquelético , Humanos , Músculo Esquelético/fisiologia , Exercício Físico/fisiologia , Atrofia Muscular , Adaptação Fisiológica , Células Musculares
2.
Am J Physiol Endocrinol Metab ; 324(5): E437-E448, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37018654

RESUMO

We aimed to investigate the human skeletal muscle (SkM) DNA methylome after exercise in low-carbohydrate (CHO) energy-balance (with high-fat) conditions compared with exercise in low-CHO energy-deficit (with low-fat) conditions. The objective was to identify novel epigenetically regulated genes and pathways associated with "train-low sleep-low" paradigms. The sleep-low conditions included nine males that cycled to deplete muscle glycogen while reaching a set energy expenditure. Postexercise, low-CHO meals (protein matched) completely replaced (using high fat) or only partially replaced (low fat) the energy expended. The following morning, resting baseline biopsies were taken and the participants then undertook 75 minutes of cycling exercise, with skeletal muscle biopsies collected 30 minutes and 3.5 hours postexercise. Discovery of genome-wide DNA methylation was undertaken using Illumina EPIC arrays, and targeted gene expression analysis was conducted by quantitative RT-PCR. At baseline, participants under energy balance (high fat) demonstrated a predominantly hypermethylated (60%) profile across the genome compared to energy-deficit low-fat conditions. However, postexercise performed in energy balance (with high fat) elicited a more prominent hypomethylation signature 30 minutes postexercise in gene regulatory regions important for transcription (CpG islands within promoter regions) compared with exercise in energy-deficit (with low-fat) conditions. Such hypomethylation was enriched within pathways related to IL6-JAK-STAT signaling, metabolic processes, p53/cell cycle, and oxidative/fatty acid metabolism. Hypomethylation within the promoter regions of the genes; histone deacetylase 2 (HDAC2), MECR, IGF2, and c13orf16 were associated with significant increases in gene expression in the postexercise period in energy balance compared with an energy deficit. Furthermore, HDAC11 was oppositely regulated at the gene expression level compared with family member HDAC2, where HDAC11 was hypomethylated yet increased in energy-deficit compared with energy-balance conditions. Overall, we identify some novel epigenetically regulated genes associated with train-low sleep-low paradigms.NEW & NOTEWORTHY We identify novel epigenetically regulated genes associated with train-low sleep-low paradigms. Exercise under low-carbohydrate (CHO) energy-balance (high-fat) conditions elicited a more prominent DNA hypomethylation signature 30 minutes postexercise compared with low-CHO energy-deficit (low-fat) conditions. This was enriched within IL6-JAK-STAT signaling, metabolic processes, p53, cell cycle, oxidative phosphorylation, and fatty acid metabolism. Histone deacetylase (HDAC) family members 2, 4, 10, and 11 demonstrated hypomethylation, with HDAC2 and HDAC11 possessing alternative regulation of gene expression in energy balance versus deficit conditions.


Assuntos
Epigenoma , Interleucina-6 , Masculino , Humanos , Interleucina-6/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Músculo Esquelético/metabolismo , Glicogênio/metabolismo , Ácidos Graxos/metabolismo
3.
FASEB J ; 37(1): e22720, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36542473

RESUMO

Cancer survivors suffer impairments in skeletal muscle in terms of reduced mass and function. Interestingly, human skeletal muscle possesses an epigenetic memory of earlier stimuli, such as exercise. Long-term retention of epigenetic changes in skeletal muscle following cancer survival and/or exercise training has not yet been studied. We, therefore, investigated genome-wide DNA methylation (methylome) in skeletal muscle following a 5-month, 3/week aerobic-training intervention in breast cancer survivors 10-14 years after diagnosis and treatment. These results were compared to breast cancer survivors who remained untrained and to age-matched controls with no history of cancer, who undertook the same training intervention. Skeletal muscle biopsies were obtained from 23 females before(pre) and after(post) the 5-month training period. InfiniumEPIC 850K DNA methylation arrays and RT-PCR for gene expression were performed. The breast cancer survivors displayed a significant retention of increased DNA methylation (i.e., hypermethylation) at a larger number of differentially methylated positions (DMPs) compared with healthy age-matched controls pre training. Training in cancer survivors led to an exaggerated number of DMPs with a hypermethylated signature occurring at non-regulatory regions compared with training in healthy age-matched controls. However, the opposite occurred in important gene regulatory regions, where training in cancer survivors elicited a considerable reduction in methylation (i.e., hypomethylation) in 99% of the DMPs located in CpG islands within promoter regions. Importantly, training was able to reverse the hypermethylation identified in cancer survivors back toward a hypomethylated signature that was observed pre training in healthy age-matched controls at 300 (out of 881) of these island/promoter-associated CpGs. Pathway enrichment analysis identified training in cancer survivors evoked a predominantly hypomethylated signature in pathways associated with cell cycle, DNA replication/repair, transcription, translation, mTOR signaling, and the proteosome. Differentially methylated region (DMR) analysis also identified genes: BAG1, BTG2, CHP1, KIFC1, MKL2, MTR, PEX11B, POLD2, S100A6, SNORD104, and SPG7 as hypermethylated in breast cancer survivors, with training reversing these CpG island/promoter-associated DMRs toward a hypomethylated signature. Training also elicited a largely different epigenetic response in healthy individuals than that observed in cancer survivors, with very few overlapping changes. Only one gene, SIRT2, was identified as having altered methylation in cancer survivors at baseline and after training in both the cancer survivors and healthy controls. Overall, human skeletal muscle may retain a hypermethylated signature as long as 10-14 years after breast cancer treatment/survival. Five months of aerobic training reset the skeletal muscle methylome toward signatures identified in healthy age-matched individuals in gene regulatory regions.


Assuntos
Neoplasias da Mama , Proteínas Imediatamente Precoces , Feminino , Humanos , Epigenoma , Neoplasias da Mama/genética , Neoplasias da Mama/terapia , Metilação de DNA , Epigênese Genética , Exercício Físico/fisiologia , Músculo Esquelético/fisiologia , Ilhas de CpG/genética , Proteínas Imediatamente Precoces/genética , Proteínas Supressoras de Tumor/genética
4.
Transl Vis Sci Technol ; 11(9): 6, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36074454

RESUMO

Purpose: The purpose of this study was to assess ocular coat mechanical behavior using controlled ocular microvolumetric injections (MVI) of 15 µL of balanced salt solution (BSS) infused over 1 second into the anterior chamber (AC) via a syringe pump. Methods: Intraocular pressure (IOP) was continuously recorded at 200 Hz with a validated implantable IOP telemetry system in 7 eyes of 7 male rhesus macaques (nonhuman primates [NHPs]) during 5 MVIs in a series at native (3 trials), 15 and 20 mm Hg baseline IOPs, repeated in 2 to 5 sessions at least 2 weeks apart. Ocular rigidity coefficients (K) and ocular pulse volume (PV) were calculated for each trial. Data were averaged across sessions within eyes; PV was analyzed with a three-level nested ANOVA, and parameter relationships were analyzed with Pearson Correlation and linear regression. Results: After MVI at native baseline IOP of 10.4 ± 1.6 mm Hg, IOP increased by 9.1 ± 2.8 mm Hg (∆IOP) at a 9.6 ± 2.7 mm Hg/s slope, ocular pulse amplitude (OPA) was 0.70 ± 0.13 mm Hg on average; the average K was 0.042 ± 0.010 µL-1 and average PV was 1.16 ± 0.43 µL. PV varied significantly between trials, days, and eyes (P ≤ 0.05). OPA was significantly correlated with K at native IOP: Pearson coefficients ranged from 0.71 to 0.83 (P ≤ 0.05) and R2 ranged from 0.50 to 0.69 (P ≤ 0.05) during the first trial. Conclusions: The MVI-driven ∆IOP and slope can be used to assess ocular coat mechanical behavior and measure ocular rigidity. Translational Relevance: Importantly, OPA at native IOP is correlated with ocular rigidity despite the significant variability in PV between heartbeats.


Assuntos
Oftalmopatias , Pressão Intraocular , Animais , Câmara Anterior , Frequência Cardíaca , Macaca mulatta , Masculino , Tonometria Ocular
5.
Front Physiol ; 12: 619447, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33679435

RESUMO

The methylome and transcriptome signatures following exercise that are physiologically and metabolically relevant to sporting contexts such as team sports or health prescription scenarios (e.g., high intensity interval training/HIIT) has not been investigated. To explore this, we performed two different sport/exercise relevant high-intensity running protocols in five male sport team members using a repeated measures design of: (1) change of direction (COD) versus; (2) straight line (ST) running exercise with a wash-out period of at least 2 weeks between trials. Skeletal muscle biopsies collected from the vastus lateralis 30 min and 24 h post exercise, were assayed using 850K methylation arrays and a comparative analysis with recent (subject-unmatched) sprint and acute aerobic exercise meta-analysis transcriptomes was performed. Despite COD and ST exercise being matched for classically defined intensity measures (speed × distance and number of accelerations/decelerations), COD exercise elicited greater movement (GPS-Playerload), physiological (HR), metabolic (lactate) as well as central and peripheral (differential RPE) exertion measures compared with ST exercise, suggesting COD exercise evoked a higher exercise intensity. The exercise response alone across both conditions evoked extensive alterations in the methylome 30 min and 24 h post exercise, particularly in MAPK, AMPK and axon guidance pathways. COD evoked a considerably greater hypomethylated signature across the genome compared with ST exercise, particularly at 30 min post exercise, enriched in: Protein binding, MAPK, AMPK, insulin, and axon guidance pathways. Comparative methylome analysis with sprint running transcriptomes identified considerable overlap, with 49% of genes that were altered at the expression level also differentially methylated after COD exercise. After differential methylated region analysis, we observed that VEGFA and its downstream nuclear transcription factor, NR4A1 had enriched hypomethylation within their promoter regions. VEGFA and NR4A1 were also significantly upregulated in the sprint transcriptome and meta-analysis of exercise transcriptomes. We also confirmed increased gene expression of VEGFA, and considerably larger increases in the expression of canonical metabolic genes PPARGC1A (that encodes PGC1-α) and NR4A3 in COD vs. ST exercise. Overall, we demonstrate that increased physiological/metabolic load via COD exercise in human skeletal muscle evokes considerable epigenetic modifications that are associated with changes in expression of genes responsible for adaptation to exercise.

6.
J Cell Physiol ; 236(9): 6534-6547, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33586196

RESUMO

Understanding the role of mechanical loading and exercise in skeletal muscle (SkM) is paramount for delineating the molecular mechanisms that govern changes in muscle mass. However, it is unknown whether loading of bioengineered SkM in vitro adequately recapitulates the molecular responses observed after resistance exercise (RE) in vivo. To address this, the transcriptional and epigenetic (DNA methylation) responses were compared after mechanical loading in bioengineered SkM in vitro and after RE in vivo. Specifically, genes known to be upregulated/hypomethylated after RE in humans were analyzed. Ninety-three percent of these genes demonstrated similar changes in gene expression post-loading in the bioengineered muscle when compared to acute RE in humans. Furthermore, similar differences in gene expression were observed between loaded bioengineered SkM and after programmed RT in rat SkM tissue. Hypomethylation occurred for only one of the genes analysed (GRIK2) post-loading in bioengineered SkM. To further validate these findings, DNA methylation and mRNA expression of known hypomethylated and upregulated genes post-acute RE in humans were also analyzed at 0.5, 3, and 24 h post-loading in bioengineered muscle. The largest changes in gene expression occurred at 3 h, whereby 82% and 91% of genes responded similarly when compared to human and rodent SkM respectively. DNA methylation of only a small proportion of genes analyzed (TRAF1, MSN, and CTTN) significantly increased post-loading in bioengineered SkM alone. Overall, mechanical loading of bioengineered SkM in vitro recapitulates the gene expression profile of human and rodent SkM after RE in vivo. Although some genes demonstrated differential DNA methylation post-loading in bioengineered SkM, such changes across the majority of genes analyzed did not closely mimic the epigenetic response to acute-RE in humans.


Assuntos
Bioengenharia , Exercício Físico/fisiologia , Perfilação da Expressão Gênica , Músculo Esquelético/fisiologia , Treinamento Resistido , Adulto , Animais , Linhagem Celular , Metilação de DNA/genética , Epigênese Genética , Humanos , Masculino , Mecanotransdução Celular/genética , Camundongos , Condicionamento Físico Animal , Transcrição Gênica , Suporte de Carga
7.
Am J Physiol Cell Physiol ; 320(1): C45-C56, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33052072

RESUMO

UBR5 is an E3 ubiquitin ligase positively associated with anabolism, hypertrophy, and recovery from atrophy in skeletal muscle. The precise mechanisms underpinning UBR5's role in the regulation of skeletal muscle mass remain unknown. The present study aimed to elucidate these mechanisms by silencing the UBR5 gene in vivo. To achieve this aim, we electroporated a UBR5-RNAi plasmid into mouse tibialis anterior muscle to investigate the impact of reduced UBR5 on anabolic signaling MEK/ERK/p90RSK and Akt/GSK3ß/p70S6K/4E-BP1/rpS6 pathways. Seven days after UBR5 RNAi electroporation, although reductions in overall muscle mass were not detected, the mean cross-sectional area (CSA) of green fluorescent protein (GFP)-positive fibers were reduced (-9.5%) and the number of large fibers were lower versus the control. Importantly, UBR5-RNAi significantly reduced total RNA, muscle protein synthesis, ERK1/2, Akt, and GSK3ß activity. Although p90RSK phosphorylation significantly increased, total p90RSK protein levels demonstrated a 45% reduction with UBR5-RNAi. Finally, these early events after 7 days of UBR5 knockdown culminated in significant reductions in muscle mass (-4.6%) and larger reductions in fiber CSA (-18.5%) after 30 days. This was associated with increased levels of phosphatase PP2Ac and inappropriate chronic elevation of p70S6K and rpS6 between 7 and 30 days, as well as corresponding reductions in eIF4e. This study demonstrates that UBR5 plays an important role in anabolism/hypertrophy, whereby knockdown of UBR5 culminates in skeletal muscle atrophy.


Assuntos
Metabolismo Energético , Músculo Esquelético/enzimologia , Atrofia Muscular/enzimologia , Ubiquitina-Proteína Ligases/metabolismo , Animais , Regulação para Baixo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Técnicas de Silenciamento de Genes , Glicogênio Sintase Quinase 3 beta/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Músculo Esquelético/patologia , Atrofia Muscular/genética , Atrofia Muscular/patologia , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Transdução de Sinais , Fatores de Tempo , Ubiquitina-Proteína Ligases/deficiência , Ubiquitina-Proteína Ligases/genética
8.
PLoS One ; 15(6): e0234458, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32569264

RESUMO

We investigated the association of multiple single nucleotide polymorphisms (SNPs) with athlete status and power/speed performance in elite male youth soccer players (ESP) and control participants (CON) at different stages of maturity. ESP (n = 535; aged 8-23 years) and CON (n = 151; aged 9-26 years) were genotyped for 10 SNPs and grouped according to years from predicted peak-height-velocity (PHV), i.e. pre- or post-PHV, to determine maturity status. Participants performed bilateral vertical countermovement jumps, bilateral horizontal-forward countermovement jumps, 20m sprints and modified 505-agility tests. Compared to CON, pre-PHV ESP demonstrated a higher ACTN3 (rs1815739) XX ('endurance') genotype frequency distribution, while post-PHV ESP revealed a higher frequency distribution of the PPARA (rs4253778) C-allele, AGT (rs699) GG genotype and NOS3 (rs2070744) T-allele ('power' genotypes/alleles). BDNF (rs6265) CC, COL5A1 (rs12722) CC and NOS3 TT homozygotes sprinted quicker than A-allele carriers, CT heterozygotes and CC homozygotes, respectively. COL2A1 (rs2070739) CC and AMPD1 (rs17602729) GG homozygotes sprinted faster than their respective minor allele carrier counterparts in CON and pre-PHV ESP, respectively. BDNF CC homozygotes jumped further than T-allele carriers, while ESP COL5A1 CC homozygotes jumped higher than TT homozygotes. To conclude, we have shown for the first time that pre- and post-PHV ESP have distinct genetic profiles, with pre-PHV ESP more suited for endurance, and post-PHV ESP for power and speed (the latter phenotypes being crucial attributes for post-PHV ESP). We have also demonstrated that power, acceleration and sprint performance were associated with five SNPs, both individually and in combination, possibly by influencing muscle size and neuromuscular activation.


Assuntos
Atletas , Desempenho Atlético/fisiologia , Perfil Genético , Maturidade Sexual/fisiologia , Futebol , Aceleração , Actinina/genética , Adolescente , Estudos de Casos e Controles , Criança , Colágeno Tipo II/genética , Colágeno Tipo V/genética , Frequência do Gene , Humanos , Masculino , Força Muscular/genética , Polimorfismo de Nucleotídeo Único , Corrida/fisiologia , Adulto Jovem
9.
Ophthalmol Glaucoma ; 2(4): 210-214, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31799505

RESUMO

Purpose: To quantify intraocular pressure (IOP) change and time course during stressful activity. Study Design: Experimental Study. Subjects: Three nonhuman primates (NHPs). Methods: Bilateral IOP and aortic blood pressure (BP) were recorded continuously, then averaged for periods of 8-30 seconds before, during, and after a common anesthetic induction procedure (cage squeeze followed by intramuscular injection). Experiments were repeated four times in each NHP. Main Outcome Measures: IOP, BP, and heart rate (HR) change during an anesthetic induction procedure. Results: IOP, mean arterial pressure (MAP), and HR increased rapidly and significantly by 27%, 38%, 34%, respectively, in anticipation of anesthetic induction (Figure; p<0.05). IOP rose ~10% within 10 seconds of hearing the technician enter the outer anteroom door, and reached its maximum within ~1 minute of first anticipating human contact. IOP fell to below baseline levels within 1 minute after anesthetic induction. Conclusions: IOP increases rapidly and significantly in response to stressful situations in the nonhuman primate.


Assuntos
Ritmo Circadiano/fisiologia , Pressão Intraocular/fisiologia , Hipertensão Ocular/etiologia , Estresse Psicológico/complicações , Telemetria/métodos , Doença Aguda , Animais , Modelos Animais de Doenças , Macaca mulatta , Masculino , Hipertensão Ocular/fisiopatologia , Estresse Psicológico/fisiopatologia
10.
Invest Ophthalmol Vis Sci ; 60(7): 2572-2582, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31212310

RESUMO

Purpose: To characterize intraocular pressure (IOP) dynamics by identifying the sources of transient IOP fluctuations and quantifying the frequency, magnitude, associated cumulative IOP-related mechanical energy, and temporal distribution. Methods: IOP was monitored at 500 Hz for periods of 16 to 451 days in nine normal eyes of six conscious, unrestrained nonhuman primates using a validated, fully implanted wireless telemetry system. IOP transducers were calibrated every two weeks via anterior chamber cannulation manometry. Analysis of time-synchronized, high-definition video was used to identify the sources of transient IOP fluctuations. Results: The distribution of IOP in individual eyes is broad, and changes at multiple timescales, from second-to-second to day-to-day. Transient IOP fluctuations arise from blinks, saccades, and ocular pulse amplitude and were as high as 14 mm Hg (>100%) above momentary baseline. Transient IOP fluctuations occur ∼10,000 times per waking hour, with ∼2000 to 5000 fluctuations per hour greater than 5 mm Hg (∼40%) above baseline. Transient IOP fluctuations account for up to 17% (mean of 12%) of the total cumulative IOP-related mechanical energy that the eye must withstand during waking hours. Conclusions: Transient IOP fluctuations occur frequently and comprise a large and significant portion of the total IOP loading in the eye and should, therefore, be considered in future studies of cell mechanotransduction, ocular biomechanics, and/or clinical outcomes where transient IOP fluctuations may be important. If IOP dynamics are similar in humans, clinical snapshot IOP measurements are insufficient to capture true IOP.


Assuntos
Fenômenos Biomecânicos/fisiologia , Pressão Intraocular/fisiologia , Mecanotransdução Celular/fisiologia , Animais , Calibragem , Ritmo Circadiano/fisiologia , Feminino , Macaca mulatta , Masculino , Telemetria , Tonometria Ocular
11.
Curr Eye Res ; 44(11): 1244-1252, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31170817

RESUMO

Purpose: Most studies on intraocular pressure (IOP) to monitor IOP "fluctuations" in glaucoma patients have been performed with snapshot tonometry techniques that obtain IOP measurements at single time points weeks to months apart. However, IOP telemetry has shown that IOP varies from second-to-second due to blinks, saccades, and systolic vascular filling. The purpose of this study was to characterize the cyclic pattern of baseline IOP and transient IOP fluctuations in 3 nonhuman primates (NHPs).Methods: Bilateral IOP was measured using a proven implantable telemetry system and recorded 500 times per second, 24 hours a day, up to 451 continuous days in 3 male rhesus macaques aged 4 to 5 years old. The IOP transducers were calibrated every two weeks via anterior chamber cannulation manometry and all data were continuously corrected for signal drift via software, filtered for signal noise and dropout, and peaks and troughs were quantified and counted using a finite impulse response filter; waking hours were defined as 6:00-18:00 hours based on room light cycle.Results: Fourier transform analyses of baseline IOP and the hourly mean frequency of transient IOP fluctuations > 0.6 mmHg, 0.6-5 mmHg and > 5 mmHg above baseline during waking hours exhibited an approximate 16- to 91-day cyclic pattern in all NHPs. There were no measured environmental or experimental factors associated with this cyclical pattern.Conclusions: While the importance of the cyclic pattern identified in IOP and its fluctuations is unknown at this time, it is plausible that this pattern is relevant to both homeostasis and pathophysiology of the ONH, corneoscleral shell, and aqueous outflow pathways.


Assuntos
Ritmo Circadiano/fisiologia , Glaucoma/fisiopatologia , Pressão Intraocular/fisiologia , Telemetria/métodos , Tonometria Ocular/métodos , Animais , Glaucoma/diagnóstico , Macaca mulatta , Masculino , Modelos Animais
12.
J Physiol ; 597(14): 3727-3749, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31093990

RESUMO

KEY POINTS: We have recently identified that a HECT domain E3 ubiquitin ligase, named UBR5, is altered epigenetically (via DNA methylation) after human skeletal muscle hypertrophy, where its gene expression is positively correlated with increasing lean leg mass after training and retraining. In the present study we extensively investigate this novel and uncharacterised E3 ubiquitin ligase (UBR5) in skeletal muscle atrophy, recovery from atrophy and injury, anabolism and hypertrophy. We demonstrated that UBR5 was epigenetically altered via DNA methylation during recovery from atrophy. We also determined that UBR5 was alternatively regulated versus well characterised E3 ligases, MuRF1/MAFbx, at the gene expression level during atrophy, recovery from atrophy and hypertrophy. UBR5 also increased at the protein level during recovery from atrophy and injury, hypertrophy and during human muscle cell differentiation. Finally, in humans, genetic variations of the UBR5 gene were strongly associated with larger fast-twitch muscle fibres and strength/power performance versus endurance/untrained phenotypes. ABSTRACT: We aimed to investigate a novel and uncharacterized E3 ubiquitin ligase in skeletal muscle atrophy, recovery from atrophy/injury, anabolism and hypertrophy. We demonstrated an alternate gene expression profile for UBR5 vs. well characterized E3-ligases, MuRF1/MAFbx, where, after atrophy evoked by continuous-low-frequency electrical-stimulation in rats, MuRF1/MAFbx were both elevated, yet UBR5 was unchanged. Furthermore, after recovery of muscle mass post TTX-induced atrophy in rats, UBR5 was hypomethylated and increased at the gene expression level, whereas a suppression of MuRF1/MAFbx was observed. At the protein level, we also demonstrated a significant increase in UBR5 after recovery of muscle mass from hindlimb unloading in both adult and aged rats, as well as after recovery from atrophy evoked by nerve crush injury in mice. During anabolism and hypertrophy, UBR5 gene expression increased following acute loading in three-dimensional bioengineered mouse muscle in vitro, and after chronic electrical stimulation-induced hypertrophy in rats in vivo, without increases in MuRF1/MAFbx. Additionally, UBR5 protein abundance increased following functional overload-induced hypertrophy of the plantaris muscle in mice and during differentiation of primary human muscle cells. Finally, in humans, genetic association studies (>700,000 single nucleotide polymorphisms) demonstrated that the A alleles of rs10505025 and rs4734621 single nucleotide polymorphisms in the UBR5 gene were strongly associated with larger cross-sectional area of fast-twitch muscle fibres and favoured strength/power vs. endurance/untrained phenotypes. Overall, we suggest that: (i) UBR5 comprises a novel E3 ubiquitin ligase that is inversely regulated to MuRF1/MAFbx; (ii) UBR5 is epigenetically regulated; and (iii) UBR5 is elevated at both the gene expression and protein level during recovery from skeletal muscle atrophy and hypertrophy.


Assuntos
Hipertrofia/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Elevação dos Membros Posteriores/fisiologia , Humanos , Masculino , Camundongos Endogâmicos C57BL , Células Musculares/metabolismo , Proteínas Musculares/metabolismo , Polimorfismo de Nucleotídeo Único/fisiologia , Ratos , Ratos Wistar
13.
Sci Rep ; 9(1): 4251, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30862794

RESUMO

Transcriptome wide changes in human skeletal muscle after acute (anabolic) and chronic resistance exercise (RE) induced hypertrophy have been extensively determined in the literature. We have also recently undertaken DNA methylome analysis (850,000 + CpG sites) in human skeletal muscle after acute and chronic RE, detraining and retraining, where we identified an association between DNA methylation and epigenetic memory of exercise induced skeletal muscle hypertrophy. However, it is currently unknown as to whether all the genes identified in the transcriptome studies to date are also epigenetically regulated at the DNA level after acute, chronic or repeated RE exposure. We therefore aimed to undertake large scale bioinformatical analysis by pooling the publicly available transcriptome data after acute (110 samples) and chronic RE (181 samples) and comparing these large data sets with our genome-wide DNA methylation analysis in human skeletal muscle after acute and chronic RE, detraining and retraining. Indeed, after acute RE we identified 866 up- and 936 down-regulated genes at the expression level, with 270 (out of the 866 up-regulated) identified as being hypomethylated, and 216 (out of 936 downregulated) as hypermethylated. After chronic RE we identified 2,018 up- and 430 down-regulated genes with 592 (out of 2,018 upregulated) identified as being hypomethylated and 98 (out of 430 genes downregulated) as hypermethylated. After KEGG pathway analysis, genes associated with 'cancer' pathways were significantly enriched in both bioinformatic analysis of the pooled transcriptome and methylome datasets after both acute and chronic RE. This resulted in 23 (out of 69) and 28 (out of 49) upregulated and hypomethylated and 12 (out of 37) and 2 (out of 4) downregulated and hypermethylated 'cancer' genes following acute and chronic RE respectively. Within skeletal muscle tissue, these 'cancer' genes predominant functions were associated with matrix/actin structure and remodelling, mechano-transduction (e.g. PTK2/Focal Adhesion Kinase and Phospholipase D- following chronic RE), TGF-beta signalling and protein synthesis (e.g. GSK3B after acute RE). Interestingly, 51 genes were also identified to be up/downregulated in both the acute and chronic RE pooled transcriptome analysis as well as significantly hypo/hypermethylated after acute RE, chronic RE, detraining and retraining. Five genes; FLNB, MYH9, SRGAP1, SRGN, ZMIZ1 demonstrated increased gene expression in the acute and chronic RE transcriptome and also demonstrated hypomethylation in these conditions. Importantly, these 5 genes demonstrated retained hypomethylation even during detraining (following training induced hypertrophy) when exercise was ceased and lean mass returned to baseline (pre-training) levels, identifying them as genes associated with epigenetic memory in skeletal muscle. Importantly, for the first time across the transcriptome and epigenome combined, this study identifies novel differentially methylated genes associated with human skeletal muscle anabolism, hypertrophy and epigenetic memory.


Assuntos
Metilação de DNA/fisiologia , Exercício Físico/fisiologia , Proteínas Musculares/metabolismo , Músculo Esquelético/fisiologia , Treinamento Resistido , Transcriptoma/fisiologia , Conjuntos de Dados como Assunto , Regulação para Baixo/fisiologia , Epigênese Genética/fisiologia , Perfilação da Expressão Gênica , Humanos , Hipertrofia/fisiopatologia , Masculino , Proteínas Musculares/genética , Regulação para Cima/fisiologia , Adulto Jovem
15.
Methods Mol Biol ; 1889: 55-79, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30367409

RESUMO

The bioengineering of skeletal muscle tissue in-vitro has enabled researchers to more closely mimic the in-vivo skeletal muscle niche. The three-dimensional (3-D) structure of the tissue engineered systems employed to date enable the generation of highly aligned and differentiated myofibers within a representative biological matrix. The use of electrical stimulation to model concentric contraction, via innervation of the myofibers, and the use of mechanical loading to model passive lengthening or stretch has begun to provide a manipulable environment to investigate the cellular and molecular responses following exercise mimicking stimuli in-vitro. Currently available bioreactor systems allow either electrical stimulation or mechanical loading to be utilized at any given time. In the present manuscript, we describe in detail the methodological procedures to create 3-D bioengineered skeletal muscle using both cell lines and/or primary human muscle derived cells from a tissue biopsy, through to modeling exercising stimuli using a bioreactor that can provide both electrical stimulation and mechanical loading simultaneously within the same in-vitro system.


Assuntos
Técnicas de Cultura de Células , Exercício Físico , Músculo Esquelético/fisiologia , Engenharia Tecidual , Animais , Engenharia Biomédica , Biópsia , Reatores Biológicos , Linhagem Celular , Criopreservação , Estimulação Elétrica , Humanos , Esferoides Celulares
16.
Invest Ophthalmol Vis Sci ; 59(11): 4496-4505, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30208417

RESUMO

Purpose: To characterize relationships between intraocular pressure (IOP), mean arterial pressure (MAP), ocular perfusion pressure (OPP), IOP transient impulse, and IOP baseline impulse using continuous telemetry in nonhuman primates. Methods: We used our validated implantable telemetry system to wirelessly record bilateral IOP and arterial BP at 500 Hz in 7 eyes of 4 male rhesus macaques, aged 4 to 5 years. IOP, MAP, OPP, IOP transient impulse, and IOP baseline impulse were averaged into 1-hour periods over 20 days for each NHP. IOP transient impulse was defined as the portion of total IOP due to transient IOP fluctuations <0.5 seconds duration alone and IOP baseline impulse as the remaining area under the IOP versus time curve. OPP was defined as arterial BP-IOP (calculated continuously), and MAP was the hourly average of the continuous BP curve. Relationships between the variables were analyzed for each 24-hour period using either multivariate linear regression or Spearman Correlation Coefficients as appropriate. Results: Over twenty 24-hour periods, IOP transient impulse and OPP showed significant positive relationship in all eyes, which was driven largely by the data during waking hours. There was no significant relationship between IOP and MAP, IOP transient impulse and MAP, or IOP baseline impulse and IOP transient impulse. Conclusions: There are significant positive relationships between the frequency and/or size of transient IOP fluctuations (IOP transient impulse) and OPP. A possible explanation of this finding is that higher OPP, as well as a greater number of blinks and saccades (the primary sources of IOP transients), are associated with increased activity.


Assuntos
Pressão Arterial/fisiologia , Pressão Sanguínea/fisiologia , Pressão Intraocular/fisiologia , Telemetria/métodos , Animais , Velocidade do Fluxo Sanguíneo/fisiologia , Macaca mulatta , Masculino , Disco Óptico/irrigação sanguínea , Fluxo Sanguíneo Regional/fisiologia , Tonometria Ocular
17.
J Cell Physiol ; 233(3): 1985-1998, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28158895

RESUMO

Bioengineering of skeletal muscle in vitro in order to produce highly aligned myofibres in relevant three dimensional (3D) matrices have allowed scientists to model the in vivo skeletal muscle niche. This review discusses essential experimental considerations for developing bioengineered muscle in order to investigate exercise mimicking stimuli. We identify current knowledge for the use of electrical stimulation and co-culture with motor neurons to enhance skeletal muscle maturation and contractile function in bioengineered systems in vitro. Importantly, we provide a current opinion on the use of acute and chronic exercise mimicking stimuli (electrical stimulation and mechanical overload) and the subsequent mechanisms underlying physiological adaptation in 3D bioengineered muscle. We also identify that future studies using the latest bioreactor technology, providing simultaneous electrical and mechanical loading and flow perfusion in vitro, may provide the basis for advancing knowledge in the future. We also envisage, that more studies using genetic, pharmacological, and hormonal modifications applied in human 3D bioengineered skeletal muscle may allow for an enhanced discovery of the in-depth mechanisms underlying the response to exercise in relevant human testing systems. Finally, 3D bioengineered skeletal muscle may provide an opportunity to be used as a pre-clinical in vitro test-bed to investigate the mechanisms underlying catabolic disease, while modelling disease itself via the use of cells derived from human patients without exposing animals or humans (in phase I trials) to the side effects of potential therapies.


Assuntos
Adaptação Fisiológica/fisiologia , Exercício Físico/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Estresse Fisiológico/fisiologia , Engenharia Tecidual/métodos , Bioengenharia/métodos , Reatores Biológicos , Estimulação Elétrica , Humanos , Contração Muscular/fisiologia , Desenvolvimento Muscular/fisiologia
18.
Invest Ophthalmol Vis Sci ; 58(14): 6232-6240, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29228251

RESUMO

Purpose: To study the effect and time course of body position changes on IOP in nonhuman primates. Methods: We recorded continuous bilateral IOP measurements with a wireless telemetry implant in three rhesus macaques in seven different body positions. IOP measurements were acquired in the seated-upright, standing, prone, supine, right and left lateral decubitus positions (LDPs), and head-down inverted positions. Continuous IOP was recorded for 90 seconds in each position before returning to a supine reference position until IOP stabilized; measurements were averaged after IOP stabilized at each position. Results: Head-down inversion increased IOP an average of 8.9 mm Hg, compared to the supine reference. In the LDP, IOP decreased an average of 0.5 mm Hg in the nondependent eye (i.e., the higher eye), while the fellow dependent (i.e., lower) eye increased an average of 0.5 mm Hg, compared to supine reference. Standing and seated positions decreased IOP 1.5 and 2.2 mm Hg, respectively, compared with supine reference. IOP changes occurred within 4 to 15 seconds of a body position change, and timing was affected by the speed at which body position was changed. Compared to the IOP in the supine position, the IOP in the inverted, prone, and seated positions was significantly different (P = 0.0313 for all). The IOP in the standing position was not statistically different from the IOP in the supine position (P = 0.094). In addition, the IOP was significantly different between the nondependent eye and the dependent eye in the LDPs compared to the supine position (P = 0.0313). Conclusions: Body position has a significant effect on IOP and those changes persist over time.


Assuntos
Pressão Intraocular/fisiologia , Decúbito Ventral/fisiologia , Próteses e Implantes , Telemetria/instrumentação , Tonometria Ocular/métodos , Animais , Modelos Animais de Doenças , Desenho de Equipamento , Glaucoma/diagnóstico , Glaucoma/fisiopatologia , Macaca mulatta , Masculino , Estudos Prospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...