Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 30(27): e202400501, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38433109

RESUMO

The ability of an octanuclear cubic coordination cage to catalyse a nucleophilic aromatic substitution reaction on a cavity-bound guest was studied with 2,4-dinitrofluorobenzene (DNFB) as the guest/substrate. It was found that DNFB undergoes a catalysed reaction with hydroxide ions within the cavity of the cubic cage (in aqueous buffer solution, pH 8.6). The rate enhancement of kcat/kuncat was determined to be 22, with cavity binding of the guest being required for catalysis to occur. The product, 2,4-dinitrophenolate (DNP), remained bound within the cavity due to electrostatic stabilisation and exerts two apparently contradictory effects: it initially auto-catalyses the reaction when present at low concentrations, but at higher concentrations inhibits catalysis when a pair of DNP guests block the cavity. When encapsulated, the UV/Vis absorption spectrum of DNP is red-shifted when compared to the spectrum of free DNP in aqueous solution. Further investigations using other aromatic guests determined that a similar red-shift on cavity binding also occurred for 4-nitrophenolate (4NP) at pH 8.6. The red-shift was used to determine the stoichiometry of guest binding of DNP and 4NP within the cage cavity, which was confirmed by structural analysis with X-ray crystallography; and was also used to perform catalytic kinetic studies in the solution-state.

2.
Chemistry ; 30(24): e202400072, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38366309

RESUMO

Self-assembling systems in nature display remarkable complexity with assemblies of different sub-units to generate functional species. Synthetic analogues of such systems are a challenge, often requiring the ability to bias distributions that are under thermodynamic assembly control. Using lantern-type MOCs (metal-organic cages) as a prototypical self-assembling system, herein we explore the role that steric bulk plays in controlling the exchange rate of ligands in paddlewheel-based assemblies, and thus the stability of cages, in competitive self-assembling scenarios. The effective lifetime of the lantern-type MOCs varies over an order of magnitude depending on the steric bulk proximal to the metal nodes with lifetimes of the cages ranging from tens of minutes to several hours. The bulk of the coordinating solvents likewise reduces the rate of ligand exchange, and thus yields longer-lived species. Understanding this subtle effect has implications for controlling the stability of complex assemblies in competitive environments with implications for guest release and application.

3.
Inorg Chem ; 63(2): 1258-1265, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38166375

RESUMO

Due to the continuous growth rate of the electronic industry, hi-tech companies depend on mining and extracting precious metals to meet the public demand. The high turnover of modern devices generates an alarming amount of electronic waste (e-waste), which contains more precious metals than mined ores and therefore needs efficient recovery procedures. A highly stable homopiperazine-derived Cd-MOF, poly-[Cd(H2L)]·9H2O, with a protonated amine ligand core, exists as a twofold interpenetrated 3D framework with 1D channels into which the N+-H bond is directed. The geometry of these channels appears to be suitable to host square planar metalate complexes. Under acidic conditions, [MCl4]x- anions containing Au, Cu, Ni, and Pt, representing common components of e-waste under extraction conditions, were tested for capture and recovery. Cd-MOF exhibits remarkable selectivity and uptake performance toward Au with an adsorbent capacity of 25 mg g-1ads and shows a marked selectivity for Au over Cu in competitive experiments. The adsorption mechanism of Au appears to be predominantly physical adsorption at the surface of the material.

4.
Dalton Trans ; 52(34): 11802-11814, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37272072

RESUMO

The host-guest chemistry of O,O'-diisopropyl fluorophosphate (DFP), a phosphonofluoridate G-series chemical warfare agent simulant, was investigated in the presence of a number of octanuclear cubic coordination cage hosts. The aim was to demonstrate cage-catalysed hydrolysis of DFP at near neutral pH: however, two octanuclear coordination cages, HPEG (containing water-solubilising PEG groups) and HW (containing water-solubilising hydroxymethyl groups), were actually found to increase the lifetime of DFP in aqueous buffer solution (pH 8.7). Crystallographic analysis of DFP with a structurally related host cage revealed that DFP binds to windows in the cage surface, not in the internal cavity. The phosphorus-fluorine bond is directed into the cavity rather than towards the external environment, with the cage/DFP association protecting DFP from hydrolysis. Initial studies with the chemical warfare agent (CWA) sarin (GB) with HPEG cage in a buffered solution also showed a drastically reduced rate of hydrolysis for sarin when bound in the host cage. The ability of these cages to inhibit hydrolysis of these P-F bond containing organophosphorus guests, by encapsulation, may have applications in forensic sample preservation and analysis.

5.
Chemistry ; 29(42): e202301054, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37132447

RESUMO

Owing to the strict hard/soft dichotomy between the lanthanoids and tellurium atoms, and the strong affinity of lanthanoid ions for high coordination numbers, low-coordinate, monomeric lanthanoid tellurolate complexes have remained elusive as compared to the lanthanoid complexes with lighter group 16 elements (O, S, and Se). This makes the development of suitable ligand systems for low-coordinate, monomeric lanthanoid tellurolate complexes an appealing endeavor. In a first report, a series of low-coordinate, monomeric lanthanoid (Yb, Eu) tellurolate complexes were synthesized by utilizing hybrid organotellurolate ligands containing N-donor pendant arms. The reaction of bis[2-((dimethylamino)methyl)phenyl] ditelluride, 1 and 8,8'diquinolinyl ditelluride, 2 with Ln0 metals (Ln=Eu, Yb) resulted in the formation of monomeric complexes [LnII (TeR)2 (Solv)2 ] [R=C6 H4 -2-CH2 NMe2 ] [3: Ln=Eu, Solv=tetrahydrofuran; 4: Ln=Eu, Solv=acetonitrile; 5: Ln=Yb, Solv=tetrahydrofuran; 6: Ln=Yb, Solv=pyridine] and [EuII (TeNC9 H6 )2 (Solv)n ] (7: Solv=tetrahydrofuran, n=3; 8: Solv=1,2-dimethoxyethane, n=2), respectively. Complexes 3-4 and 7-8 represent the first sets of examples of monomeric europium tellurolate complexes. The molecular structures of complexes 3-8 are validated by single-crystal X-ray diffraction studies. The electronic structures of these complexes were investigated using Density Functional Theory (DFT) calculations, which revealed appreciable covalency between the tellurolate ligands and lanthanoids.

6.
Dalton Trans ; 51(48): 18502-18513, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36422236

RESUMO

A series of mononuclear lanthanoidate complexes isolated as [Bu4N][Ln(QCl4)] 1Ln (QCl = 5-chloro-8-quinolinolate; Ln = Eu, Gd, Tb, Dy, Ho, and Er) have been prepared, characterised, and used as facile precursors to obtain a series of new heterobimetallic complexes as crystalline materials. Reaction of 1Ln with manganese nitrate forms [Ln2Mn(QCl)8] (2Ln, where Ln = Tb, Dy, Er and Yb) which have been structurally characterised in the cases of 2Tb and 2Yb. The heteroleptic trinuclear complex [Dy3(QCl)8Cl(OH2)], 3, has also been obtained. Compounds 1Dy, 1Tb, and 1Er display slow relaxation of magnetisation below 10K, particularly for the prolate Er3+ ion. These results also suggest that the positive effects of the change from mononuclear to trinuclear lanthanoid complexes enhance their single molecule magnetic (SMM) behaviour, as evidenced by the well resolved frequency dependent AC out-of-phase susceptibility maxima seen in the 2Ln systems, that have been analysed quantitatively. The synthesis used here provides a promising strategy in obtaining heterobimetallic complexes with quinolinolate ligands and also constructing efficient heterobimetallic SMMs.

7.
Angew Chem Int Ed Engl ; 61(13): e202117809, 2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35043530

RESUMO

Herein, we report a series of CuPd catalysts for electrochemical hydrogenation (ECH) of furfural to 2-methylfuran (MF or FurCH3 where Fur=furyl) in aqueous 0.1 M acetic acid (pH 2.9). The highest faradaic efficiency (FE) for MF reached 75 % at -0.58 V vs. reversible hydrogen electrode with an average partial current density of 4.5 mA cm-2 . In situ surface-enhanced Raman spectroscopic and kinetic isotopic experiments suggested that electrogenerated adsorbed hydrogen (Hads ) was involved in the reaction and incorporation of Pd enhanced the surface coverage of Hads and optimized the adsorption pattern of furfural, leading to a higher FE for MF. Density functional theory calculations revealed that Pd incorporation reduced the energy barrier for the hydrogenation of FurCH2 * to FurCH3 *. Our study demonstrates that catalyst surface structure/composition plays a crucial role in determining the selectivity in ECH and provides a new strategy for designing advanced catalysts for ECH of bio-derived oxygenates.

8.
Chem Commun (Camb) ; 57(93): 12456-12459, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34755718

RESUMO

Control of self-sorting regimes is achieved through adjustment of steric interactions in self-assembled coordination cages. The self-assembly regime of dynamic mixtures of heteroleptic cages is followed by HPLC to show that statistical or biased distributions can be selectively obtained, including isolation of a single heteroleptic species.

9.
Sci Adv ; 7(28)2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34233872

RESUMO

Anthropogenic emissions to the atmosphere have increased the flux of nutrients, especially nitrogen, to the ocean, but they have also altered the acidity of aerosol, cloud water, and precipitation over much of the marine atmosphere. For nitrogen, acidity-driven changes in chemical speciation result in altered partitioning between the gas and particulate phases that subsequently affect long-range transport. Other important nutrients, notably iron and phosphorus, are affected, because their soluble fractions increase upon exposure to acidic environments during atmospheric transport. These changes affect the magnitude, distribution, and deposition mode of individual nutrients supplied to the ocean, the extent to which nutrient deposition interacts with the sea surface microlayer during its passage into bulk seawater, and the relative abundances of soluble nutrients in atmospheric deposition. Atmospheric acidity change therefore affects ecosystem composition, in addition to overall marine productivity, and these effects will continue to evolve with changing anthropogenic emissions in the future.

10.
Chem Asian J ; 16(16): 2351-2360, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34214252

RESUMO

The controlled oxidation reaction of L-selenocystine under neutral pH conditions affords selenocysteine seleninic acid (3-selenino-L-alanine) which is characterized also by means of single-crystal X-ray diffraction. This technique shows that selenium forms three chalcogen bonds (ChBs), one of them being outstandingly short. A survey of seleninic acid derivatives in the Cambridge Structural Database (CSD) confirms that the C-Se(=O)O- functionality tends to act as a ChB donor robust enough to systematically influence the interactional landscape in the solid. Quantum Theory of Atom in Molecules (QTAIM) analysis proves the attractive nature of the short contacts observed in crystals containing the seleninic functionality and calculation of surface molecular electrostatic potential (MEP) reveals that remarkably positive σ-holes can frequently be found opposite to the covalent bonds at selenium. Both CSD searches and QTAIM and MEP approaches show that also the sulfinic acid moiety can function as a ChB donor, albeit less frequently than the seleninic acid one. These findings may contribute to a better understanding, at the atomic level, of the mechanism of action of the enzymes that control oxidative stress and ROS deactivation and that contain selenocysteine seleninic acid and cysteine sulfinic acid in the active site.

11.
Chem Asian J ; 16(1): 39-43, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33251757

RESUMO

A new ferrocene-containing [Pd3 (L4EFc )6 ]6+ (X- )6 (C ⋅ BF4 and C ⋅ SbF6 where X=BF4 - or SbF6 - ) self-assembled double-walled triangle has been synthesized from the known, rotationally flexible, 1,1'-bis(4-pyridylethynyl)ferrocene ligand (L4EFc ), and characterized by 1 H, 13 C and diffusion ordered (DOSY) NMR spectroscopies, high-resolution electrospray ionization mass spectrometry (HR-ESI-MS), X-ray crystallography and cyclic voltammetry (CV). The molecular structures confirmed that double-walled triangle cage systems (C ⋅ BF4 and C ⋅ SbF6 ) were generated. C ⋅ BF4 was shown to interact with the anionic guest, p-toluenesulfonate. CV experiments revealed that the triangles were redox active, however addition of the guest did not influence the redox potentials.

12.
Dalton Trans ; 49(16): 5241-5249, 2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32239022

RESUMO

A linear diamine-bisisophthalate bridging linker N,N'-bis(1,3-dicarboxyphenyl-5-methylene)-1,3-dimethylpropanediamine, designed to incorporate amine/ammonium functionalities in the core of the ligand, has been isolated as the pentahydrate of its dihydrochloride salt (H6L)Cl2·5H2O. Using this compound, four new coordination polymers have been formed, namely poly-[M(H2L)]·4.5H2O (1M, where M = Co, Zn, Cd) and poly-[Cd(H2L)(OH2)]·DMF·7H2O (2). Compounds 1M are isostructural 2D coordination polymers that contain 1D channels occupied by water molecules. In the case of 1Co these form a well ordered hydrogen-bonding network as determined by single crystal X-ray studies. Compound 2, synthesised under similar conditions, is a 1D coordination polymer in which the metal is partially solvated. DC and AC magnetic studies of 1Co, which posseses a mononuclear cobalt(ii) node, revealed single molecule magnet behaviour (SMM) with an effective barrier height Ueff of 37.7 K and τ0 = 1.02 × 10-9 s, among the highest reported for CoII coordination polymers.

13.
Dalton Trans ; 49(4): 1173-1180, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31895377

RESUMO

The stoichiometrically controlled alkaline hydrolysis of 4, (ppy)TeCl3, [ppy = 2-(2'-pyridyl)phenyl] afforded the partially hydrolyzed µ-oxo-bridged dinuclear telluroxane 5, [(ppyTeCl2)2(µ-O)] and a novel example of an Intramolecular Chalcogen Bonding (IChB) stabilized, monomeric organotellurinic acid 6, (ppy)Te(O)OH. The oxidation of diaryl ditelluride 7, (ppyTe)2 using H2O2 resulted in the isolation of µ-oxo-bridged dimethyl ester 8, [(ppy)Te(O)(OH)(OMe)]2(O). The molecular structures of 4-6 and 8 are unambiguously authenticated by single crystal X-ray diffraction studies. The electronic structure of monomeric tellurinic acid 6 is investigated using DFT calculations. The Natural Bond Order (NBO) analysis, in corroboration with Atoms in Molecules (AIM) analysis reveals that tellurinic acid 6 is stabilized by σ-hole participation of the tellurium atom with the pyridyl N-atom resulting in strong electrostatic interactions between the N and Te atoms.

14.
Chem Asian J ; 14(16): 2853-2860, 2019 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-31228320

RESUMO

The metallosupramolecular chemistry of two enantiopure dicarboxylate ligands has been explored for their potential to form discrete or polymeric interlocked motifs. Consequently, both discrete and polymeric supramolecular complexes have been synthesised, yielding M2 L2 metallomacrocycles (1 and 2), a heteroleptic M2 L3 metallomacrobicycle (3), a non-interpenetrated coordination polymer (4), and highly unusual chiral M8 L8 squares (5 and 6). There appears to be a preference for the ligands to form M2 L2 -type metallomacrocyclic structural units (which feature in 1-4), although these do not engage in any mechanical interlocking, which is perhaps a combined function of the ligand flexibility and relatively small pi-surface contrasted to previous analogues. Using copper paddlewheel SBUs, chiral double-walled squares (5 and 6) are formed with large internal cavities yet poor stabilities, unexpectedly featuring the paddlewheel motifs at the vertices of the polygonal complex.

15.
Chemistry ; 25(36): 8489-8493, 2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31056779

RESUMO

A chiral, octahedral M12 L12 cage, which is charge neutral and contains an internal void of about 2000 Å3 , is reported. The cage was synthesised as an enantiopure complex by virtue of amino-acid-based dicarboxylate ligands, which assemble around copper paddlewheels at the vertices of the octahedron. The cage persists in solution with retention of the fluorescence properties of the parent acid. The solid-state structure contains large pores both within and between the cages, and displays permanent porosity for the sorption of gases with retention of crystallinity. Initial tests show some enantioselectivity of the cage towards guests in solution.

16.
J Colloid Interface Sci ; 545: 269-275, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30897422

RESUMO

The dearth of an efficient, robust, abundant and cost-effective water oxidation catalyst is debatably the major hurdle for the technological advancement of artificial photosynthesis devices. Herein, a three dimensional (3D) cobalt-based coordination polymer {[Co3(pyz)(fa)3(dmso)2]·2H2O}n, (1) (pyz = pyrazine, fa = fumarate, dmso = dimethyl sulfoxide) has been synthesized and demonstrated to act as an efficient electrocatalyst towards water oxidation at neutral pH. Compound 1 displays a stair-like arrangement parallel to the b-axis, with the cobalt clusters arranged in a zigzag fashion, and contains small, honeycomb-like channels parallel to the c-axis. Compound 1 shows a remarkable activity for water oxidation and attains a current density of 1 mA.cm-2 at low overpotential (η = 257 mV) with a Tafel slope value of 80.5 mV.dec-1. This high performance of 1 in catalysing the water oxidation reaction is attributed to its unique 3-D architecture. The results of electrochemical investigations, including long-term and controlled potential electrolysis, are anticipated to guide the forthcoming advancement in creating efficient, cheap and noble metal (Pt/Ru/Ir) free catalysts for the water oxidation reaction.

17.
Chem Commun (Camb) ; 55(5): 663-666, 2019 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-30564823

RESUMO

Metallomacrocycles and [2]-catenanes based on a leucine substituted naphthalene diimide ligand have been confirmed in solution through detection of excimer and exciplex emission. Comparison with the behaviour of the free ligand provides insight into the solution speciation of the metallosupramolecular complexes and their solvent dependent nature.

18.
Chem Commun (Camb) ; 54(64): 8925-8928, 2018 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-30046797

RESUMO

The first cadmium-based ionic liquids (ILs) have been developed, along with a family of cadmium dialkyldithiocarbamate salts, (cation)[Cd(R2dtc)3], in the pursuit of single source molecular precursors that thermolyse to form cadmium sulfide. Pyrrolidinium cadmium dialkyldithiocarbamate salts, (C4C1py)[Cd(R2dtc)3], salts were established to be ILs through thorough thermal and structural investigation.

19.
Chemistry ; 24(19): 4774-4779, 2018 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-29450922

RESUMO

The interdependent effects of temperature and guest uptake on the structure of the ultramicroporous metal-organic framework [Cu3 (cdm)4 ] (cdm=C(CN)2 (CONH2 )- ) were explored in detail by using in situ neutron scattering and density functional theory calculations. The tetragonal lattice displays an anisotropic thermal response related to a hinged "lattice-fence" mechanism, unusual for this topology, which is facilitated by pivoting of the rigid cdm anion about the Cu nodes. Calculated pore-size metrics clearly illustrate the potential for temperature-mediated adsorption in ultramicroporous frameworks due to thermal fluctuations of the pore diameter near the value of the target guest kinetic diameter, though in [Cu3 (cdm)4 ] this is counteracted by a competing contraction of the pore with increasing temperature as a result of the anisotropic lattice response.

20.
Chempluschem ; 83(7): 669-675, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31950628

RESUMO

An understanding of the atomic-scale interactions between gas sorbent materials and their molecular guests is essential for the identification of the origins of desirable function and the rational optimization of performance. However, characterizations performed on equilibrated sorbent-guest systems may not accurately represent their behavior under dynamic operating conditions. The emergence of fast (minute-scale) neutron powder diffraction coupled with direct, real-time quantification of gas uptake opens up new possibilities for obtaining knowledge about concentration-dependent effects of guest loading upon function-critical features of sorbent materials, including atomic structure, diffusion pathways, and thermal expansion of the sorbent framework. This article presents a detailed investigation of the ultramicroporous metal-organic framework [Cu3 (cdm)4 ] as a case study to demonstrate the variety of insights into sorbent performance that can be obtained from real-time characterizations using neutron diffraction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...