Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Biol ; 21(10): e3002206, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37906721

RESUMO

Sparse coding can improve discrimination of sensory stimuli by reducing overlap between their representations. Two factors, however, can offset sparse coding's benefits: similar sensory stimuli have significant overlap and responses vary across trials. To elucidate the effects of these 2 factors, we analyzed odor responses in the fly and mouse olfactory regions implicated in learning and discrimination-the mushroom body (MB) and the piriform cortex (PCx). We found that neuronal responses fall along a continuum from extremely reliable across trials to extremely variable or stochastic. Computationally, we show that the observed variability arises from noise within central circuits rather than sensory noise. We propose this coding scheme to be advantageous for coarse- and fine-odor discrimination. More reliable cells enable quick discrimination between dissimilar odors. For similar odors, however, these cells overlap and do not provide distinguishing information. By contrast, more unreliable cells are decorrelated for similar odors, providing distinguishing information, though these benefits only accrue with extended training with more trials. Overall, we have uncovered a conserved, stochastic coding scheme in vertebrates and invertebrates, and we identify a candidate mechanism, based on variability in a winner-take-all (WTA) inhibitory circuit, that improves discrimination with training.


Assuntos
Dípteros , Percepção Olfatória , Animais , Camundongos , Condutos Olfatórios/fisiologia , Olfato/fisiologia , Odorantes , Aprendizagem/fisiologia , Percepção Olfatória/fisiologia
2.
Proc Natl Acad Sci U S A ; 120(39): e2221415120, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37733736

RESUMO

Foraging animals must use decision-making strategies that dynamically adapt to the changing availability of rewards in the environment. A wide diversity of animals do this by distributing their choices in proportion to the rewards received from each option, Herrnstein's operant matching law. Theoretical work suggests an elegant mechanistic explanation for this ubiquitous behavior, as operant matching follows automatically from simple synaptic plasticity rules acting within behaviorally relevant neural circuits. However, no past work has mapped operant matching onto plasticity mechanisms in the brain, leaving the biological relevance of the theory unclear. Here, we discovered operant matching in Drosophila and showed that it requires synaptic plasticity that acts in the mushroom body and incorporates the expectation of reward. We began by developing a dynamic foraging paradigm to measure choices from individual flies as they learn to associate odor cues with probabilistic rewards. We then built a model of the fly mushroom body to explain each fly's sequential choice behavior using a family of biologically realistic synaptic plasticity rules. As predicted by past theoretical work, we found that synaptic plasticity rules could explain fly matching behavior by incorporating stimulus expectations, reward expectations, or both. However, by optogenetically bypassing the representation of reward expectation, we abolished matching behavior and showed that the plasticity rule must specifically incorporate reward expectations. Altogether, these results reveal the first synapse-level mechanisms of operant matching and provide compelling evidence for the role of reward expectation signals in the fly brain.


Assuntos
Drosophila , Motivação , Animais , Aprendizagem , Encéfalo , Recompensa
3.
bioRxiv ; 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37503182

RESUMO

Genetically encoded fluorescent calcium indicators have revolutionized neuroscience and other biological fields by allowing cellular-resolution recording of physiology during behavior. However, we currently lack bright, genetically targetable indicators in the near infrared that can be used in animals. Here, we describe WHaloCaMP, a modular chemigenetic calcium indicator built from bright dye-ligands and protein sensor domains that can be genetically targeted to specific cell populations. Fluorescence change in WHaloCaMP results from reversible quenching of the bound dye via a strategically placed tryptophan. WHaloCaMP is compatible with rhodamine dye-ligands that fluoresce from green to near-infrared, including several dye-ligands that efficiently label the central nervous system in animals. When bound to a near-infrared dye-ligand, WHaloCaMP1a is more than twice as bright as jGCaMP8s, and shows a 7× increase in fluorescence intensity and a 2.1 ns increase in fluorescence lifetime upon calcium binding. We use WHaloCaMP1a with near-infrared fluorescence emission to image Ca2+ responses in flies and mice, to perform three-color multiplexed functional imaging of hundreds of neurons and astrocytes in zebrafish larvae, and to quantitate calcium concentration using fluorescence lifetime imaging microscopy (FLIM).

4.
Elife ; 122023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37318123

RESUMO

Memory guides behavior across widely varying environments and must therefore be both sufficiently specific and general. A memory too specific will be useless in even a slightly different environment, while an overly general memory may lead to suboptimal choices. Animals successfully learn to both distinguish between very similar stimuli and generalize across cues. Rather than forming memories that strike a balance between specificity and generality, Drosophila can flexibly categorize a given stimulus into different groups depending on the options available. We asked how this flexibility manifests itself in the well-characterized learning and memory pathways of the fruit fly. We show that flexible categorization in neuronal activity as well as behavior depends on the order and identity of the perceived stimuli. Our results identify the neural correlates of flexible stimulus-categorization in the fruit fly.


Assuntos
Drosophila , Memória , Animais , Drosophila/fisiologia , Memória/fisiologia , Aprendizagem/fisiologia , Neurônios/fisiologia , Sinais (Psicologia) , Drosophila melanogaster/fisiologia , Corpos Pedunculados/fisiologia
5.
Curr Biol ; 33(13): 2742-2760.e12, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37348501

RESUMO

The ability to discriminate sensory stimuli with overlapping features is thought to arise in brain structures called expansion layers, where neurons carrying information about sensory features make combinatorial connections onto a much larger set of cells. For 50 years, expansion coding has been a prime topic of theoretical neuroscience, which seeks to explain how quantitative parameters of the expansion circuit influence sensory sensitivity, discrimination, and generalization. Here, we investigate the developmental events that produce the quantitative parameters of the arthropod expansion layer, called the mushroom body. Using Drosophila melanogaster as a model, we employ genetic and chemical tools to engineer changes to circuit development. These allow us to produce living animals with hypothesis-driven variations on natural expansion layer wiring parameters. We then test the functional and behavioral consequences. By altering the number of expansion layer neurons (Kenyon cells) and their dendritic complexity, we find that input density, but not cell number, tunes neuronal odor selectivity. Simple odor discrimination behavior is maintained when the Kenyon cell number is reduced and augmented by Kenyon cell number expansion. Animals with increased input density to each Kenyon cell show increased overlap in Kenyon cell odor responses and become worse at odor discrimination tasks.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/fisiologia , Drosophila melanogaster/fisiologia , Corpos Pedunculados/fisiologia , Neurônios/fisiologia , Proteínas de Drosophila/genética , Odorantes
6.
Neuron ; 111(10): 1547-1563.e9, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37015225

RESUMO

The ability to optically image cellular transmembrane voltages at millisecond-timescale resolutions can offer unprecedented insight into the function of living brains in behaving animals. Here, we present a point mutation that increases the sensitivity of Ace2 opsin-based voltage indicators. We use the mutation to develop Voltron2, an improved chemigeneic voltage indicator that has a 65% higher sensitivity to single APs and 3-fold higher sensitivity to subthreshold potentials than Voltron. Voltron2 retained the sub-millisecond kinetics and photostability of its predecessor, although with lower baseline fluorescence. In multiple in vitro and in vivo comparisons with its predecessor across multiple species, we found Voltron2 to be more sensitive to APs and subthreshold fluctuations. Finally, we used Voltron2 to study and evaluate the possible mechanisms of interneuron synchronization in the mouse hippocampus. Overall, we have discovered a generalizable mutation that significantly increases the sensitivity of Ace2 rhodopsin-based sensors, improving their voltage reporting capability.


Assuntos
Enzima de Conversão de Angiotensina 2 , Rodopsina , Camundongos , Animais , Potenciais de Ação/fisiologia , Rodopsina/genética , Neurônios/fisiologia , Mutação/genética
7.
Nature ; 615(7954): 884-891, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36922596

RESUMO

Calcium imaging with protein-based indicators1,2 is widely used to follow neural activity in intact nervous systems, but current protein sensors report neural activity at timescales much slower than electrical signalling and are limited by trade-offs between sensitivity and kinetics. Here we used large-scale screening and structure-guided mutagenesis to develop and optimize several fast and sensitive GCaMP-type indicators3-8. The resulting 'jGCaMP8' sensors, based on the calcium-binding protein calmodulin and a fragment of endothelial nitric oxide synthase, have ultra-fast kinetics (half-rise times of 2 ms) and the highest sensitivity for neural activity reported for a protein-based calcium sensor. jGCaMP8 sensors will allow tracking of large populations of neurons on timescales relevant to neural computation.


Assuntos
Sinalização do Cálcio , Cálcio , Calmodulina , Neurônios , Óxido Nítrico Sintase Tipo III , Fragmentos de Peptídeos , Cálcio/análise , Cálcio/metabolismo , Calmodulina/metabolismo , Neurônios/metabolismo , Cinética , Óxido Nítrico Sintase Tipo III/química , Óxido Nítrico Sintase Tipo III/metabolismo , Fatores de Tempo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo
8.
bioRxiv ; 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36747712

RESUMO

Animals can discriminate myriad sensory stimuli but can also generalize from learned experience. You can probably distinguish the favorite teas of your colleagues while still recognizing that all tea pales in comparison to coffee. Tradeoffs between detection, discrimination, and generalization are inherent at every layer of sensory processing. During development, specific quantitative parameters are wired into perceptual circuits and set the playing field on which plasticity mechanisms play out. A primary goal of systems neuroscience is to understand how material properties of a circuit define the logical operations-computations--that it makes, and what good these computations are for survival. A cardinal method in biology-and the mechanism of evolution--is to change a unit or variable within a system and ask how this affects organismal function. Here, we make use of our knowledge of developmental wiring mechanisms to modify hard-wired circuit parameters in the Drosophila melanogaster mushroom body and assess the functional and behavioral consequences. By altering the number of expansion layer neurons (Kenyon cells) and their dendritic complexity, we find that input number, but not cell number, tunes odor selectivity. Simple odor discrimination performance is maintained when Kenyon cell number is reduced and augmented by Kenyon cell expansion.

9.
Annu Rev Neurosci ; 43: 465-484, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32283995

RESUMO

The Drosophila brain contains a relatively simple circuit for forming Pavlovian associations, yet it achieves many operations common across memory systems. Recent advances have established a clear framework for Drosophila learning and revealed the following key operations: a) pattern separation, whereby dense combinatorial representations of odors are preprocessed to generate highly specific, nonoverlapping odor patterns used for learning; b) convergence, in which sensory information is funneled to a small set of output neurons that guide behavioral actions; c) plasticity, where changing the mapping of sensory input to behavioral output requires a strong reinforcement signal, which is also modulated by internal state and environmental context; and d) modularization, in which a memory consists of multiple parallel traces, which are distinct in stability and flexibility and exist in anatomically well-defined modules within the network. Cross-module interactions allow for higher-order effects where past experience influences future learning. Many of these operations have parallels with processes of memory formation and action selection in more complex brains.


Assuntos
Aprendizagem/fisiologia , Memória/fisiologia , Corpos Pedunculados/fisiologia , Olfato/fisiologia , Animais , Comportamento Animal , Humanos , Condutos Olfatórios/fisiologia
10.
Proc Natl Acad Sci U S A ; 117(38): 23292-23297, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-31455738

RESUMO

Innate behavioral biases and preferences can vary significantly among individuals of the same genotype. Though individuality is a fundamental property of behavior, it is not currently understood how individual differences in brain structure and physiology produce idiosyncratic behaviors. Here we present evidence for idiosyncrasy in olfactory behavior and neural responses in Drosophila We show that individual female Drosophila from a highly inbred laboratory strain exhibit idiosyncratic odor preferences that persist for days. We used in vivo calcium imaging of neural responses to compare projection neuron (second-order neurons that convey odor information from the sensory periphery to the central brain) responses to the same odors across animals. We found that, while odor responses appear grossly stereotyped, upon closer inspection, many individual differences are apparent across antennal lobe (AL) glomeruli (compact microcircuits corresponding to different odor channels). Moreover, we show that neuromodulation, environmental stress in the form of altered nutrition, and activity of certain AL local interneurons affect the magnitude of interfly behavioral variability. Taken together, this work demonstrates that individual Drosophila exhibit idiosyncratic olfactory preferences and idiosyncratic neural responses to odors, and that behavioral idiosyncrasies are subject to neuromodulation and regulation by neurons in the AL.


Assuntos
Drosophila/fisiologia , Animais , Comportamento Animal , Encéfalo/fisiologia , Cálcio/metabolismo , Feminino , Individualidade , Neurônios/fisiologia , Odorantes/análise , Olfato
11.
Opt Express ; 27(24): 35830-35841, 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31878749

RESUMO

We compared performance of recently developed silicon photomultipliers (SiPMs) to GaAsP photomultiplier tubes (PMTs) for two-photon imaging of neural activity. Despite higher dark counts, SiPMs match or exceed the signal-to-noise ratio of PMTs at photon rates encountered in typical calcium imaging experiments due to their low pulse height variability. At higher photon rates encountered during high-speed voltage imaging, SiPMs substantially outperform PMTs.

12.
Science ; 365(6454): 699-704, 2019 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-31371562

RESUMO

Genetically encoded voltage indicators (GEVIs) enable monitoring of neuronal activity at high spatial and temporal resolution. However, the utility of existing GEVIs has been limited by the brightness and photostability of fluorescent proteins and rhodopsins. We engineered a GEVI, called Voltron, that uses bright and photostable synthetic dyes instead of protein-based fluorophores, thereby extending the number of neurons imaged simultaneously in vivo by a factor of 10 and enabling imaging for significantly longer durations relative to existing GEVIs. We used Voltron for in vivo voltage imaging in mice, zebrafish, and fruit flies. In the mouse cortex, Voltron allowed single-trial recording of spikes and subthreshold voltage signals from dozens of neurons simultaneously over a 15-minute period of continuous imaging. In larval zebrafish, Voltron enabled the precise correlation of spike timing with behavior.


Assuntos
Monitorização Fisiológica/métodos , Neuroimagem/métodos , Neurônios/fisiologia , Imagens com Corantes Sensíveis à Voltagem/métodos , Animais , Comportamento Animal , Fluorescência , Transferência Ressonante de Energia de Fluorescência , Engenharia Genética , Larva , Proteínas Luminescentes/química , Proteínas Luminescentes/genética , Mesencéfalo/citologia , Mesencéfalo/fisiologia , Camundongos , Optogenética , Domínios Proteicos , Rodopsinas Microbianas/química , Rodopsinas Microbianas/genética , Natação , Peixe-Zebra
13.
Elife ; 62017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28718765

RESUMO

Understanding memory formation, storage and retrieval requires knowledge of the underlying neuronal circuits. In Drosophila, the mushroom body (MB) is the major site of associative learning. We reconstructed the morphologies and synaptic connections of all 983 neurons within the three functional units, or compartments, that compose the adult MB's α lobe, using a dataset of isotropic 8 nm voxels collected by focused ion-beam milling scanning electron microscopy. We found that Kenyon cells (KCs), whose sparse activity encodes sensory information, each make multiple en passant synapses to MB output neurons (MBONs) in each compartment. Some MBONs have inputs from all KCs, while others differentially sample sensory modalities. Only 6% of KC>MBON synapses receive a direct synapse from a dopaminergic neuron (DAN). We identified two unanticipated classes of synapses, KC>DAN and DAN>MBON. DAN activation produces a slow depolarization of the MBON in these DAN>MBON synapses and can weaken memory recall.


Assuntos
Conectoma , Drosophila/anatomia & histologia , Drosophila/fisiologia , Corpos Pedunculados/anatomia & histologia , Corpos Pedunculados/fisiologia , Animais , Aprendizagem , Memória
14.
Elife ; 52016 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-27083044

RESUMO

Previously, we demonstrated that visual and olfactory associative memories of Drosophila share mushroom body (MB) circuits (Vogt et al., 2014). Unlike for odor representation, the MB circuit for visual information has not been characterized. Here, we show that a small subset of MB Kenyon cells (KCs) selectively responds to visual but not olfactory stimulation. The dendrites of these atypical KCs form a ventral accessory calyx (vAC), distinct from the main calyx that receives olfactory input. We identified two types of visual projection neurons (VPNs) directly connecting the optic lobes and the vAC. Strikingly, these VPNs are differentially required for visual memories of color and brightness. The segregation of visual and olfactory domains in the MB allows independent processing of distinct sensory memories and may be a conserved form of sensory representations among insects.


Assuntos
Drosophila/fisiologia , Corpos Pedunculados/fisiologia , Vias Neurais/fisiologia , Neurônios/fisiologia , Lobo Óptico de Animais não Mamíferos/fisiologia , Animais , Drosophila/anatomia & histologia , Memória , Corpos Pedunculados/anatomia & histologia , Vias Neurais/anatomia & histologia , Neurônios/citologia , Percepção Olfatória , Lobo Óptico de Animais não Mamíferos/anatomia & histologia , Percepção Visual
15.
Neuron ; 88(5): 985-998, 2015 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-26637800

RESUMO

Although associative learning has been localized to specific brain areas in many animals, identifying the underlying synaptic processes in vivo has been difficult. Here, we provide the first demonstration of long-term synaptic plasticity at the output site of the Drosophila mushroom body. Pairing an odor with activation of specific dopamine neurons induces both learning and odor-specific synaptic depression. The plasticity induction strictly depends on the temporal order of the two stimuli, replicating the logical requirement for associative learning. Furthermore, we reveal that dopamine action is confined to and distinct across different anatomical compartments of the mushroom body lobes. Finally, we find that overlap between sparse representations of different odors defines both stimulus specificity of the plasticity and generalizability of associative memories across odors. Thus, the plasticity we find here not only manifests important features of associative learning but also provides general insights into how a sparse sensory code is read out.


Assuntos
Aprendizagem da Esquiva/fisiologia , Rede Nervosa/fisiologia , Plasticidade Neuronal/fisiologia , Bulbo Olfatório/citologia , Bulbo Olfatório/fisiologia , Células Receptoras Sensoriais/fisiologia , Animais , Animais Geneticamente Modificados , Cálcio , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Potenciais Pós-Sinápticos Excitadores/fisiologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Odorantes , Optogenética , Técnicas de Patch-Clamp , Estimulação Luminosa , Células Receptoras Sensoriais/efeitos dos fármacos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
Nature ; 526(7572): 258-62, 2015 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-26416731

RESUMO

Although all sensory circuits ascend to higher brain areas where stimuli are represented in sparse, stimulus-specific activity patterns, relatively little is known about sensory coding on the descending side of neural circuits, as a network converges. In insects, mushroom bodies have been an important model system for studying sparse coding in the olfactory system, where this format is important for accurate memory formation. In Drosophila, it has recently been shown that the 2,000 Kenyon cells of the mushroom body converge onto a population of only 34 mushroom body output neurons (MBONs), which fall into 21 anatomically distinct cell types. Here we provide the first, to our knowledge, comprehensive view of olfactory representations at the fourth layer of the circuit, where we find a clear transition in the principles of sensory coding. We show that MBON tuning curves are highly correlated with one another. This is in sharp contrast to the process of progressive decorrelation of tuning in the earlier layers of the circuit. Instead, at the population level, odour representations are reformatted so that positive and negative correlations arise between representations of different odours. At the single-cell level, we show that uniquely identifiable MBONs display profoundly different tuning across different animals, but that tuning of the same neuron across the two hemispheres of an individual fly was nearly identical. Thus, individualized coordination of tuning arises at this level of the olfactory circuit. Furthermore, we find that this individualization is an active process that requires a learning-related gene, rutabaga. Ultimately, neural circuits have to flexibly map highly stimulus-specific information in sparse layers onto a limited number of different motor outputs. The reformatting of sensory representations we observe here may mark the beginning of this sensory-motor transition in the olfactory system.


Assuntos
Drosophila melanogaster/citologia , Drosophila melanogaster/fisiologia , Corpos Pedunculados/citologia , Corpos Pedunculados/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Percepção Olfatória/fisiologia , Adenilil Ciclases/genética , Adenilil Ciclases/metabolismo , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Feminino , Aprendizagem/fisiologia , Masculino , Mutação/genética , Neurônios/classificação , Condutos Olfatórios/fisiologia , Desempenho Psicomotor
17.
PLoS One ; 9(2): e88977, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24586468

RESUMO

Recent progress in intracellular calcium sensors and other fluorophores has promoted the widespread adoption of functional optical imaging in the life sciences. Home-built multiphoton microscopes are easy to build, highly customizable, and cost effective. For many imaging applications a 3-axis motorized stage is critical, but commercially available motorization hardware (motorized translators, controller boxes, etc) are often very expensive. Furthermore, the firmware on commercial motor controllers cannot easily be altered and is not usually designed with a microscope stage in mind. Here we describe an open-source motorization solution that is simple to construct, yet far cheaper and more customizable than commercial offerings. The cost of the controller and motorization hardware are under $1000. Hardware costs are kept low by replacing linear actuators with high quality stepper motors. Electronics are assembled from commonly available hobby components, which are easy to work with. Here we describe assembly of the system and quantify the positioning accuracy of all three axes. We obtain positioning repeatability of the order of 1 µm in X/Y and 0.1 µm in Z. A hand-held control-pad allows the user to direct stage motion precisely over a wide range of speeds (10(-1) to 10(2) µm·s(-1)), rapidly store and return to different locations, and execute "jumps" of a fixed size. In addition, the system can be controlled from a PC serial port. Our "OpenStage" controller is sufficiently flexible that it could be used to drive other devices, such as micro-manipulators, with minimal modifications.


Assuntos
Microscopia/instrumentação , Custos e Análise de Custo , Desenho de Equipamento , Microscopia/economia , Reprodutibilidade dos Testes
18.
Nat Neurosci ; 16(12): 1821-9, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24141312

RESUMO

In the olfactory system, sensory inputs are arranged in different glomerular channels, which respond in combinatorial ensembles to the various chemical features of an odor. We investigated where and how this combinatorial code is read out deeper in the brain. We exploited the unique morphology of neurons in the Drosophila mushroom body, which receive input on large dendritic claws. Imaging odor responses of these dendritic claws revealed that input channels with distinct odor tuning converge on individual mushroom body neurons. We determined how these inputs interact to drive the cell to spike threshold using intracellular recordings to examine mushroom body responses to optogenetically controlled input. Our results provide an elegant explanation for the characteristic selectivity of mushroom body neurons: these cells receive different types of input and require those inputs to be coactive to spike. These results establish the mushroom body as an important site of integration in the fly olfactory system.


Assuntos
Dendritos/fisiologia , Corpos Pedunculados/citologia , Neurônios/citologia , Odorantes , Condutos Olfatórios/fisiologia , Animais , Animais Geneticamente Modificados , Cálcio/metabolismo , Drosophila , Proteínas de Drosophila , Estimulação Elétrica , Feminino , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Potenciais da Membrana/fisiologia , Modelos Neurológicos , Técnicas de Patch-Clamp , Estimulação Luminosa , Rodopsina/genética , Rodopsina/metabolismo , Sinapses/fisiologia
19.
J Neurosci ; 33(25): 10568-81, 2013 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-23785169

RESUMO

The brain represents sensory information in the coordinated activity of neuronal ensembles. Although the microcircuits underlying olfactory processing are well characterized in Drosophila, no studies to date have examined the encoding of odor identity by populations of neurons and related it to the odor specificity of olfactory behavior. Here we used two-photon Ca(2+) imaging to record odor-evoked responses from >100 neurons simultaneously in the Drosophila mushroom body (MB). For the first time, we demonstrate quantitatively that MB population responses contain substantial information on odor identity. Using a series of increasingly similar odor blends, we identified conditions in which odor discrimination is difficult behaviorally. We found that MB ensemble responses accounted well for olfactory acuity in this task. Kenyon cell ensembles with as few as 25 cells were sufficient to match behavioral discrimination accuracy. Using a generalization task, we demonstrated that the MB population code could predict the flies' responses to novel odors. The degree to which flies generalized a learned aversive association to unfamiliar test odors depended upon the relative similarity between the odors' evoked MB activity patterns. Discrimination and generalization place different demands on the animal, yet the flies' choices in these tasks were reliably predicted based on the amount of overlap between MB activity patterns. Therefore, these different behaviors can be understood in the context of a single physiological framework.


Assuntos
Drosophila/fisiologia , Corpos Pedunculados/fisiologia , Corpos Pedunculados/ultraestrutura , Percepção Olfatória/fisiologia , Animais , Cálcio/fisiologia , Discriminação Psicológica/fisiologia , Generalização Psicológica/fisiologia , Processamento de Imagem Assistida por Computador , Aprendizagem/fisiologia , Modelos Lineares , Corpos Pedunculados/citologia , Neuroimagem/métodos , Odorantes , Condutos Olfatórios , Desempenho Psicomotor/fisiologia , Transmissão Sináptica/fisiologia
20.
J Neurosci ; 31(33): 11772-85, 2011 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-21849538

RESUMO

Sensory stimuli are represented in the brain by the activity of populations of neurons. In most biological systems, studying population coding is challenging since only a tiny proportion of cells can be recorded simultaneously. Here we used two-photon imaging to record neural activity in the relatively simple Drosophila mushroom body (MB), an area involved in olfactory learning and memory. Using the highly sensitive calcium indicator GCaMP3, we simultaneously monitored the activity of >100 MB neurons in vivo (∼5% of the total population). The MB is thought to encode odors in sparse patterns of activity, but the code has yet to be explored either on a population level or with a wide variety of stimuli. We therefore imaged responses to odors chosen to evaluate the robustness of sparse representations. Different odors activated distinct patterns of MB neurons; however, we found no evidence for spatial organization of neurons by either response probability or odor tuning within the cell body layer. The degree of sparseness was consistent across a wide range of stimuli, from monomolecular odors to artificial blends and even complex natural smells. Sparseness was mainly invariant across concentrations, largely because of the influence of recent odor experience. Finally, in contrast to sensory processing in other systems, no response features distinguished natural stimuli from monomolecular odors. Our results indicate that the fundamental feature of odor processing in the MB is to create sparse stimulus representations in a format that facilitates arbitrary associations between odor and punishment or reward.


Assuntos
Microscopia de Fluorescência por Excitação Multifotônica/métodos , Corpos Pedunculados/citologia , Corpos Pedunculados/fisiologia , Condutos Olfatórios/citologia , Condutos Olfatórios/fisiologia , Olfato/fisiologia , Animais , Animais Geneticamente Modificados , Diagnóstico por Imagem/métodos , Drosophila , Odorantes , Neurônios Receptores Olfatórios/citologia , Neurônios Receptores Olfatórios/fisiologia , Distribuição Aleatória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...