Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RMD Open ; 8(1)2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35589331

RESUMO

OBJECTIVES: Given the similarity in symptoms between primary Sjogren's syndrome (SjS) and non-SjS sicca syndrome (sicca), we sought to characterise clinical and proteomic predictors of symptoms in both groups in order to better understand disease mechanisms and help guide development of immunomodulatory treatments. These have not, to date, unequivocally improved symptoms in SjS clinical trials. METHODS: Serum proteomics was performed using O-link inflammation and cardiovascular II panels. SjS (n=53) fulfilled 2016 ACR/European Alliance of Associations for Rheumatology (EULAR) criteria whereas sicca (n=60) were anti-Ro negative, displayed objective or subjective dryness, and either had a negative salivary gland biopsy or, in the absence of a biopsy, it was considered that a biopsy result would not change classification status. Linear regression analysis was performed to identify the key predictors of symptoms. Cluster analysis was completed using protein expression values. RESULTS: EULAR-Sjögren's-Syndrome-Patient-Reported-Index (ESSPRI), EuroQoL-5 Dimension utility values, and anxiety and depression did not differ between SjS and sicca. Correlations between body mass index (BMI) and ESSPRI were found in sicca and to a lesser extent in SjS. Twenty proteins positively associated with symptoms in sicca but none in SjS. We identified two proteomically defined subgroups in sicca and two in SjS that differed in symptom burden. Within hierarchical clustering of the SjS and sicca pool, the highest symptom burden groups were the least distinct. Levels of adrenomedullin (ADM), soluble CD40 (CD40) and spondin 2 (SPON2) together explained 51% of symptom variability in sicca. ADM was strongly correlated with ESSPRI (spearman's r=0.62; p<0.0001), even in a multivariate model corrected for BMI, age, objective dryness, depression and anxiety scores. CONCLUSIONS: Obesity-related metabolic factors may regulate symptoms in sicca. Further work should explore non-inflammatory drivers of high symptom burden in SjS to improve clinical trial outcomes.


Assuntos
Reumatologia , Síndrome de Sjogren , Ansiedade/etiologia , Proteínas da Matriz Extracelular/uso terapêutico , Humanos , Proteínas de Neoplasias/uso terapêutico , Proteômica , Síndrome de Sjogren/complicações , Síndrome de Sjogren/diagnóstico , Síndrome de Sjogren/tratamento farmacológico
2.
Front Med (Lausanne) ; 7: 21, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32083090

RESUMO

Transcriptomic technologies are constantly changing and improving, resulting in an ever increasing understanding of gene expression in health and disease. These technologies have been used to investigate the pathological changes occurring in the joints of rheumatoid arthritis patients, leading to discoveries of disease mechanisms, and novel potential therapeutic targets. Microarrays were initially used on both whole tissue and cell subsets to investigate research questions, with bulk RNA sequencing allowing for further elaboration of these findings. A key example is the classification of pathotypes in rheumatoid arthritis using RNA sequencing that had previously been discovered using microarray and histology. Single-cell sequencing has now delivered a step change in understanding of the diversity and function of subpopulations of cells, in particular synovial fibroblasts. Future technologies, such as high resolution spatial transcriptomics, will enable step changes integrating single cell transcriptomic and geographic data to provide an integrated understanding of synovial pathology.

3.
Nature ; 570(7760): 246-251, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31142839

RESUMO

The identification of lymphocyte subsets with non-overlapping effector functions has been pivotal to the development of targeted therapies in immune-mediated inflammatory diseases (IMIDs)1,2. However, it remains unclear whether fibroblast subclasses with non-overlapping functions also exist and are responsible for the wide variety of tissue-driven processes observed in IMIDs, such as inflammation and damage3-5. Here we identify and describe the biology of distinct subsets of fibroblasts responsible for mediating either inflammation or tissue damage in arthritis. We show that deletion of fibroblast activation protein-α (FAPα)+ fibroblasts suppressed both inflammation and bone erosions in mouse models of resolving and persistent arthritis. Single-cell transcriptional analysis identified two distinct fibroblast subsets within the FAPα+ population: FAPα+THY1+ immune effector fibroblasts located in the synovial sub-lining, and FAPα+THY1- destructive fibroblasts restricted to the synovial lining layer. When adoptively transferred into the joint, FAPα+THY1- fibroblasts selectively mediate bone and cartilage damage with little effect on inflammation, whereas transfer of FAPα+ THY1+ fibroblasts resulted in a more severe and persistent inflammatory arthritis, with minimal effect on bone and cartilage. Our findings describing anatomically discrete, functionally distinct fibroblast subsets with non-overlapping functions have important implications for cell-based therapies aimed at modulating inflammation and tissue damage.


Assuntos
Artrite Reumatoide/patologia , Fibroblastos/patologia , Animais , Osso e Ossos/patologia , Endopeptidases , Feminino , Fibroblastos/classificação , Fibroblastos/metabolismo , Gelatinases/metabolismo , Humanos , Inflamação/patologia , Articulações/patologia , Masculino , Proteínas de Membrana/metabolismo , Camundongos , RNA-Seq , Serina Endopeptidases/metabolismo , Análise de Célula Única , Membrana Sinovial/patologia , Antígenos Thy-1/metabolismo
4.
Adv Exp Med Biol ; 1060: 37-54, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30155621

RESUMO

This review discusses the important role fibroblasts play in the process of inflammation and the evidence that these cells may drive the persistence of inflammation. Fibroblasts are key components of the stroma normally involved in maintenance of extracellular matrix and tissue function; however, the term 'fibroblast' is used to describe a heterogeneous population of cells that vary in phenotype both between and within anatomical sites. Fibroblasts possess Toll-like receptors allowing them to respond to pathogen and damage-related signals by producing proinflammatory mediators such as IL-6, PGE2, and GM-CSF and can produce a range of chemokines such as CXCL12, CXCL13, and CXCL8 which attract B and T lymphocytes, monocytes, and neutrophils to sites of inflammation. Interactions between leukocytes and fibroblasts can facilitate increased survival of the leukocytes and modulate phenotypes leading to differential gene expression in the presence of mediators involved in inflammation. Fibroblasts also contribute to collateral tissue damage during inflammation through the production of members of the metalloproteinase family and cathepsins and also through induction of osteoclastogenesis leading to increased bone resorption rates. In persistent diseases, fibroblasts obtain an imprinted, aggressive phenotype leading to the production of higher basal levels of proinflammatory cytokines and the ability to damage tissue in the absence of continual stimuli. This aggressive phenotype offers an attractive new target for therapeutics that could help alleviate the burden of persistent inflammation.


Assuntos
Osso e Ossos/patologia , Fibroblastos/patologia , Osteoblastos/patologia , Animais , Humanos , Inflamação/patologia , Células Estromais/patologia
5.
Arthritis Res Ther ; 20(1): 139, 2018 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-29996944

RESUMO

BACKGROUND: Detailed molecular analyses of cells from rheumatoid arthritis (RA) synovium hold promise in identifying cellular phenotypes that drive tissue pathology and joint damage. The Accelerating Medicines Partnership RA/SLE Network aims to deconstruct autoimmune pathology by examining cells within target tissues through multiple high-dimensional assays. Robust standardized protocols need to be developed before cellular phenotypes at a single cell level can be effectively compared across patient samples. METHODS: Multiple clinical sites collected cryopreserved synovial tissue fragments from arthroplasty and synovial biopsy in a 10% DMSO solution. Mechanical and enzymatic dissociation parameters were optimized for viable cell extraction and surface protein preservation for cell sorting and mass cytometry, as well as for reproducibility in RNA sequencing (RNA-seq). Cryopreserved synovial samples were collectively analyzed at a central processing site by a custom-designed and validated 35-marker mass cytometry panel. In parallel, each sample was flow sorted into fibroblast, T-cell, B-cell, and macrophage suspensions for bulk population RNA-seq and plate-based single-cell CEL-Seq2 RNA-seq. RESULTS: Upon dissociation, cryopreserved synovial tissue fragments yielded a high frequency of viable cells, comparable to samples undergoing immediate processing. Optimization of synovial tissue dissociation across six clinical collection sites with ~ 30 arthroplasty and ~ 20 biopsy samples yielded a consensus digestion protocol using 100 µg/ml of Liberase™ TL enzyme preparation. This protocol yielded immune and stromal cell lineages with preserved surface markers and minimized variability across replicate RNA-seq transcriptomes. Mass cytometry analysis of cells from cryopreserved synovium distinguished diverse fibroblast phenotypes, distinct populations of memory B cells and antibody-secreting cells, and multiple CD4+ and CD8+ T-cell activation states. Bulk RNA-seq of sorted cell populations demonstrated robust separation of synovial lymphocytes, fibroblasts, and macrophages. Single-cell RNA-seq produced transcriptomes of over 1000 genes/cell, including transcripts encoding characteristic lineage markers identified. CONCLUSIONS: We have established a robust protocol to acquire viable cells from cryopreserved synovial tissue with intact transcriptomes and cell surface phenotypes. A centralized pipeline to generate multiple high-dimensional analyses of synovial tissue samples collected across a collaborative network was developed. Integrated analysis of such datasets from large patient cohorts may help define molecular heterogeneity within RA pathology and identify new therapeutic targets and biomarkers.


Assuntos
Artrite Reumatoide/patologia , Citometria de Fluxo/métodos , Ensaios de Triagem em Larga Escala/métodos , Membrana Sinovial/patologia , Criopreservação , Humanos
6.
Nat Commun ; 9(1): 789, 2018 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-29476097

RESUMO

Fibroblasts regulate tissue homeostasis, coordinate inflammatory responses, and mediate tissue damage. In rheumatoid arthritis (RA), synovial fibroblasts maintain chronic inflammation which leads to joint destruction. Little is known about fibroblast heterogeneity or if aberrations in fibroblast subsets relate to pathology. Here, we show functional and transcriptional differences between fibroblast subsets from human synovial tissues using bulk transcriptomics of targeted subpopulations and single-cell transcriptomics. We identify seven fibroblast subsets with distinct surface protein phenotypes, and collapse them into three subsets by integrating transcriptomic data. One fibroblast subset, characterized by the expression of proteins podoplanin, THY1 membrane glycoprotein and cadherin-11, but lacking CD34, is threefold expanded in patients with RA relative to patients with osteoarthritis. These fibroblasts localize to the perivascular zone in inflamed synovium, secrete proinflammatory cytokines, are proliferative, and have an in vitro phenotype characteristic of invasive cells. Our strategy may be used as a template to identify pathogenic stromal cellular subsets in other complex diseases.


Assuntos
Artrite Reumatoide/metabolismo , Fibroblastos/metabolismo , Artrite Reumatoide/genética , Caderinas/genética , Caderinas/metabolismo , Células Cultivadas , Humanos , Membrana Sinovial/citologia , Membrana Sinovial/metabolismo , Antígenos Thy-1/genética , Antígenos Thy-1/metabolismo , Transcriptoma
7.
PLoS One ; 12(8): e0182751, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28793332

RESUMO

INTRODUCTION: Previous studies have shown increased expression of stromal markers in synovial tissue (ST) of patients with established rheumatoid arthritis (RA). Here, ST expression of stromal markers in early arthritis in relationship to diagnosis and prognostic outcome was studied. METHODS: ST from 56 patients included in two different early arthritis cohorts and 7 non-inflammatory controls was analysed using immunofluorescence to detect stromal markers CD55, CD248, fibroblast activation protein (FAP) and podoplanin. Diagnostic classification (gout, psoriatic arthritis, unclassified arthritis (UA), parvovirus associated arthritis, reactive arthritis and RA), disease outcome (resolving vs persistent) and clinical variables were determined at baseline and after follow-up, and related to the expression of stromal markers. RESULTS: We observed expression of all stromal markers in ST of early arthritis patients, independent of diagnosis or prognostic outcome. Synovial expression of FAP was significantly higher in patients developing early RA compared to other diagnostic groups and non-inflammatory controls. In RA FAP protein was expressed in both lining and sublining layers. Podoplanin expression was higher in all early inflammatory arthritis patients than controls, but did not differentiate diagnostic outcomes. Stromal marker expression was not associated with prognostic outcomes of disease persistence or resolution. There was no association with clinical or sonographic variables. CONCLUSIONS: Stromal cell markers CD55, CD248, FAP and podoplanin are expressed in ST in the earliest stage of arthritis. Baseline expression of FAP is higher in early synovitis patients who fulfil classification criteria for RA over time. These results suggest that significant fibroblast activation occurs in RA in the early window of disease.


Assuntos
Artrite/metabolismo , Células Estromais/metabolismo , Membrana Sinovial/metabolismo , Adulto , Idoso , Antígenos CD/metabolismo , Antígenos de Neoplasias/metabolismo , Artrite/diagnóstico , Biomarcadores/metabolismo , Antígenos CD55/metabolismo , Progressão da Doença , Endopeptidases , Feminino , Fibroblastos/metabolismo , Gelatinases/metabolismo , Humanos , Masculino , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Pessoa de Meia-Idade , Prognóstico , Serina Endopeptidases/metabolismo , Sinovite/diagnóstico , Sinovite/metabolismo
8.
Curr Opin Rheumatol ; 27(2): 175-82, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25603041

RESUMO

PURPOSE OF REVIEW: Synovial fibroblasts continue to grow in prominence both as the subjects of research into the pathogenesis of rheumatoid arthritis and as novel therapeutic targets. This timely review aims to integrate the most recent findings with existing paradigms of fibroblast-related mechanisms of disease. RECENT FINDINGS: Linking the role of synovial fibroblasts as innate sentinels expressing pattern recognition receptors such as toll-like receptors to their effector roles in joint damage and interactions with leukocyte subpopulations has continued to advance. Understanding of the mechanisms underlying increased fibroblast survival in the inflamed synovium has led to therapeutic strategies such as cyclin-dependent kinase inhibition. Major advances have taken place in understanding of the interactions between epigenetic and micro-RNA regulation of transcription in synovial fibroblasts, improving our understanding of the unique pathological phenotype of these cells. Finally, the impact of new markers for fibroblast subpopulations is beginning to become apparent, offering the potential for targeting of pathological cells as the roles of different populations become clearer. SUMMARY: Over the past 2 years, major advances have continued to emerge in understanding of the relationship between synovial fibroblasts and the regulation of inflammatory pathways in the rheumatoid arthritis synovium.


Assuntos
Artrite Reumatoide/imunologia , Fibroblastos/imunologia , Membrana Sinovial/imunologia , Artrite Reumatoide/genética , Comunicação Celular/imunologia , Epigênese Genética/imunologia , Humanos , Imunidade Inata , Leucócitos/imunologia , MicroRNAs/genética
9.
Cell Rep ; 9(2): 591-604, 2014 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-25373902

RESUMO

Different subsets and/or polarized phenotypes of monocytes and macrophages may play distinct roles during the development and resolution of inflammation. Here, we demonstrate in a murine model of rheumatoid arthritis that nonclassical Ly6C(-) monocytes are required for the initiation and progression of sterile joint inflammation. Moreover, nonclassical Ly6C(-) monocytes differentiate into inflammatory macrophages (M1), which drive disease pathogenesis and display plasticity during the resolution phase. During the development of arthritis, these cells polarize toward an alternatively activated phenotype (M2), promoting the resolution of joint inflammation. The influx of Ly6C(-) monocytes and their subsequent classical and then alternative activation occurs without changes in synovial tissue-resident macrophages, which express markers of M2 polarization throughout the course of the arthritis and attenuate joint inflammation during the initiation phase. These data suggest that circulating Ly6C(-) monocytes recruited to the joint upon injury orchestrate the development and resolution of autoimmune joint inflammation.


Assuntos
Antígenos Ly/metabolismo , Artrite Experimental/imunologia , Monócitos/imunologia , Animais , Antígenos Ly/genética , Artrite Experimental/metabolismo , Ativação de Macrófagos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/metabolismo , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...