Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 11(12)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38137359

RESUMO

We demonstrate for the first time the combination of two additive manufacturing technologies used in tandem, fused deposition modelling (FDM) and melt electrowriting (MEW), to increase the range of possible MEW structures, with a focus on creating branched, hollow scaffolds for vascularization. First, computer-aided design (CAD) was used to design branched mold halves which were then used to FDM print conductive polylactic acid (cPLA) molds. Next, MEW was performed over the top of these FDM cPLA molds using polycaprolactone (PCL), an FDA-approved biomaterial. After the removal of the newly constructed MEW scaffolds from the FDM molds, complementary MEW scaffold halves were heat-melded together by placing the flat surfaces of each half onto a temperature-controlled platform, then pressing the heated halves together, and finally allowing them to cool to create branched, hollow constructs. This hybrid technique permitted the direct fabrication of hollow MEW structures that would otherwise not be possible to achieve using MEW alone. The scaffolds then underwent in vitro physical and biological testing. Specifically, dynamic mechanical analysis showed the scaffolds had an anisotropic stiffness of 1 MPa or 5 MPa, depending on the direction of the applied stress. After a month of incubation, normal human dermal fibroblasts (NHDFs) were seen growing on the scaffolds, which demonstrated that no deleterious effects were exerted by the MEW scaffolds constructed using FDM cPLA molds. The significant potential of our hybrid additive manufacturing approach to fabricate complex MEW scaffolds could be applied to a variety of tissue engineering applications, particularly in the field of vascularization.

2.
Brain Sci ; 12(11)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36358440

RESUMO

This study explored the effect of electroencephalographic infraslow neurofeedback (EEG ISF-NF) training on effective connectivity and tested whether such effective connectivity changes are correlated with changes in pain and disability in people with chronic low back pain. This involved secondary analysis of a pilot double-blinded randomised placebo-controlled study. Participants (n = 60) were randomised to receive ISF-NF targeting either the pregenual anterior cingulate cortex (pgACC), dorsal anterior cingulate and somatosensory cortex (dACC + S1), ratio of pgACC*2/dACC + S1, or Sham-NF. Resting-state EEG and clinical outcomes were assessed at baseline, immediately after intervention, and at one-week and one-month follow-up. Kruskal-Wallis tests demonstrated significant between-group differences in effective connectivity from pgACC to S1L at one-month follow up and marginal significant changes from S1L to pgACC at one-week and one-month follow up. Mann-Whitney U tests demonstrated significant increases in effective connectivity in the ISF-NF up-training pgACC group when compared to the Sham-NF group (pgACC to S1L at one-month (p = 0.013), and S1L to pgACC at one-week (p = 0.008) and one-month follow up (p = 0.016)). Correlational analyses demonstrated a significant negative correlation (ρ = -0.630, p = 0.038) between effective connectivity changes from pgACC to S1L and changes in pain severity at one-month follow-up. The ISF-NF training pgACC can reduce pain via influencing effective connectivity between pgACC and S1L.

3.
Tissue Eng Part C Methods ; 28(8): 431-439, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35658609

RESUMO

Thermal injury trauma can induce a state of immunosuppression, causing wounds to become chronic in nature. Stem cell-based therapies represent a promising new approach to treat such wounds due to their capacity to self-renew and their multi-lineage potential. Mesenchymal stem cells (MSCs) are known to secrete endogenous factors that stimulate wound healing by promoting angiogenesis, extracellular matrix remodeling, skin regeneration, and by dampening down inflammation. MSC delivery in a biomaterial construct can augment their wound-healing capacity by concentrating cells at the burn site and upregulating trophic factor secretion. The work presented is the first to evaluate repair in an in vitro raft thermal injury model using a regenerative, dual cell delivery three-dimensional (3D) core/shell (c/s) "living dressing" construct. This previously characterized 3D c/s bioprinted construct, which delivers both MSCs and endothelial cells, was used to treat an in vitro 3D raft skin thermal injury wound model. The mesenchymal stromal cell line (T0523) was encapsulated within a gelatin-based shell bioink, and human umbilical vein endothelial cells within a chitosan-based core bioink to biofabricate a living dressing for enhanced thermal injury repair and regeneration. We hypothesized that the cell-laden c/s tissue engineered construct (TEC) would strengthen the wound's proangiogenic, anti-inflammatory, and skin regeneration potential. An in vitro thermal injury in a 3D raft skin model showed a slight delay in wound closure in the presence of the c/s TEC but was augmented by corresponding increases in the release of wound-healing factors, epidermal growth factor, matrix metalloproteinases-9, transforming growth factor-α, platelet-derived growth factor; a decrease in pro-inflammatory factor interleukin-6, and evidence of neovascularization.


Assuntos
Queimaduras , Cicatrização , Bandagens , Queimaduras/terapia , Células Endoteliais , Humanos , Imunidade
4.
Biopolymers ; 113(4): e23482, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34812488

RESUMO

Melt extrusion 3D printing has become an attractive additive manufacturing technology to construct degradable scaffolds as tissue precursors in order to create clinically relevant medical devices. Towards this end, a commonly used synthetic polyester, poly-caprolactone (PCL), was used to make scaffolds composed of different biomaterial compositions to increase bioactivity using 3D melt pneumatic extrusion technology. Varying ratios of the natural biopolymer, chitosan, or the bioceramic, ß-tricalcium phosphate (TCP) were blended with PCL to fabricate support scaffolds with three-dimensional (3D) architecture for human bone-marrow derived mesenchymal stem cell (hBMSC) growth for potential bone regeneration application. In this study, basic printing requirements as well as biomaterial dynamic mechanical (DMA), elemental, and thermogravimetric (TGA) analysis results demonstrate material homogeneity as well as thermal stability. Scaffold morphology and microarchitecture were assessed using scanning electron microscopy (SEM) alongside in vitro scaffold degradation and biological characterisation. Human BMSC proliferation was assessed using fluorescence imaging, and quantitated via the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) colorimetric assay. These in vitro cell viability studies revealed that the highest chitosan concentration blend of 20% favoured the most hBMSC growth, exhibited the most swelling, and showed minimal degradation after 28 days. The 20% TCP blend had the second highest hBMSC growth, exhibited moderate swelling, and the fastest degradation rate. Overall, this study demonstrates the first direct comparison of a natural biopolymer-based, that is, chitosan, 3D melt extruded PCL composite with that of a bioceramic-based, that is, ß-TCP, PCL composite and their effects on hBMSC 3D proliferation. 3D melt extruded PCL-based composite scaffolds methodology offers a straightforward way to print scaffolds with good shape fidelity, interconnected porosities and enhanced bioactivity; and demonstrates their potential use for regenerative, bone repair applications.


Assuntos
Quitosana , Materiais Biocompatíveis/farmacologia , Fosfatos de Cálcio , Caproatos , Humanos , Lactonas , Engenharia Tecidual/métodos , Alicerces Teciduais
5.
Gels ; 7(3)2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34287296

RESUMO

A series of star and linear polymers based on a poly(ethylene oxide) core and poly(diethylene glycol ethyl ether acrylate) outer arms were synthesised by atom-transfer radical polymerization. The polydispersity of the polymers were low, showing good control of initiation and growth. They all showed lower critical solution (LCST) behaviour, and at 30% concentration most gelled at or below room temperature. The behaviour depended on the number and length of the arms, with the polymers with longer arms gelling at a lower temperature and producing stiffer gels. The shear modulus of the gels varied between 1 and 48 kPa, with the gelling temperature varying between 16 and 23 °C. Attempted cell cultures with the polymers proved unsuccessful, which was determined to be due to the high concentration of polymers needed for gelling.

6.
ACS Appl Bio Mater ; 4(2): 1319-1329, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35014483

RESUMO

Melt electrowriting (MEW) is an emerging technique that precisely fabricates microfibrous scaffolds, ideal for tissue engineering, where biomimetic microarchitectural detail is required. Polycaprolactone (PCL), a synthetic polymer, was selected as the scaffold material due to its biocompatibility, biodegradability, mechanical strength, and melt processability. To increase PCL bioactivity, a natural polymer, chitosan, was added to construct MEW fibrous composite scaffolds. To date, this is the first study of its kind detailing the effects of stem cell behavior on PCL containing chitosan MEW scaffolds. The aim of this study was to melt electrowrite a range of PCL/chitosan tissue-engineered constructs (TECs) and assess their suitability to promote the growth of human bone-marrow-derived mesenchymal stem cells (hBMSCs). In vitro physical and biological characterizations of melt-electrowritten TECs were performed. Physical characterization showed that reproducible, layered micron-range scaffolds could be successfully fabricated. As well, cell migration and proliferation were assessed via an assay to monitor cell infiltration throughout the three-dimensional (3D) melt-electrowritten scaffold structure. A statistically significant increase (∼140%) in hBMSC proliferation in 1 wt % chitosan PCL blends in comparison to PCL-only scaffolds was found when monitored over two weeks. Overall, our study demonstrates the fabrication of melt-electrowritten PCL/chitosan composite scaffolds with controlled microarchitecture and their potential use for regenerative, tissue engineering applications.


Assuntos
Técnicas de Cultura de Células em Três Dimensões/instrumentação , Quitosana/química , Células-Tronco Mesenquimais/fisiologia , Poliésteres/química , Técnicas de Cultura de Células em Três Dimensões/métodos , Humanos , Engenharia Tecidual/métodos , Alicerces Teciduais/química
7.
Tissue Eng Part C Methods ; 26(10): 519-527, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32977739

RESUMO

Background: Three-dimensional (3D) printing using melt electrowriting (MEW) technology is a recently developed technique to produce biocompatible micron-level mesh scaffolds layer-by-layer that can be seeded with cells for tissue engineering. Examining cell behavior, such as growth rate and migration, can be problematic in these opaque 3D scaffolds. A straightforward and quantitative method was developed to examine these cellular parameters on poly-ɛ-caprolactone (PCL) multilayered MEW scaffolds developed as components of the annulus fibrosus region of bioengineered intervertebral discs. Experiment: The anti-adhesion protein, bovine serum albumin (BSA), was used to coat plasticware to improve mesenchymal stem cell (T0523) adhesion to MEW scaffolds. Cells were seeded on circular MEW (cMEW) discs as defined growth starting points sandwiched between two test template scaffolds investigated at varying pore sizes. Cell expansion, growth, and migration were quantitated utilizing the protein-specific dye sulforhodamine B (SRB). Live cell imaging combined with image analysis were used to examine cell motility and expansion on 3D scaffolds. Results: After one coating of BSA, cells remained nonadherent for the duration of the study with cell spheroids formed and enlarging over 21 days and becoming entangled in MEW scaffold pores. Cells grown on the 250 µm pore size scaffolds exhibited a doubling time of 7 days, whereas the 400 µm pore size scaffolds time was 11.5 days. Conclusions: BSA coating of tissue culture dishes prevented surface adhesion of cells to vessel surfaces and promoted spheroid formation that encouraged attachment to the PCL scaffolds. Batch-printed cMEW scaffolds were useful as a defined starting point for quantitative assays that successfully measured cell migration, expansion and proliferation on test scaffolds. The SRB assay was shown to be a useful and straightforward way to quantitate cell numbers in multilayered MEW scaffolds. A pore size of 250 µm exhibited the fastest cell growth, spread, and expansion. Impact statement In this article, a new, useful, and straightforward method to quantitate cell numbers on three-dimensional (3D) melt electrowritten (MEW) scaffolds is presented. By using the sulforhodamine B assay on bovine serum albumin-coated dishes cell migration, expansion and proliferation in 3D printed MEW test scaffolds were quantitatively measured. Printed circular MEW (cMEW) scaffolds sandwiched between two MEW test scaffolds (Fig. 3) were used as defined cellular growth starting points with a particular pore size of 250 µm displaying the fastest cell growth and migration. This MEW sandwich technique could potentially be used to quantitate cell numbers and migration in other 3D multilayered MEW scaffold systems.


Assuntos
Células-Tronco Mesenquimais/citologia , Rodaminas/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Linhagem Celular , Proliferação de Células , Humanos , Poliésteres/química
8.
ACS Appl Mater Interfaces ; 12(29): 32328-32339, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32597164

RESUMO

Three-dimensional (3D) bioprinting has emerged to create novel cell-based therapies for regenerative medicine applications. Vascularized networks within engineered constructs are required, and toward this end, we report a promising strategy using core-shell (c/s) extrusion 3D-bioprinting technology that employs biomimetic biomaterials to construct regenerative, prevascularized scaffolds for wound care. A custom-designed cell-responsive bioink consisting of a 13% (w/v) cell-laden gelatin methacryloyl (GelMA) shell surrounding a peptide-functionalized, succinylated chitosan (C)/dextran aldehyde (D) cell-laden core was successfully bioprinted resulting in organized microdesigns exhibiting excellent cell viability and subsequent vessel formation. Our templating strategy takes advantage of GelMA's intrinsic thermoreversible properties of low degree of acryloyl functionalization used in combination with a lightly, chemically cross-linked peptide-CD core to serve as temporal structural supports that stabilize during extrusion onto a cooled platform. Mechanical integrity was further strengthened layer-by-layer via GelMA UV photo-cross-linking. We report the first example of GelMA used in combination with a peptide-CD bioink to c/s 3D-bioprint regenerative, prevascularized constructs for wound care. Particular cell adhesion and proteolytic peptide-CD functionalized pair combinations, P15/MMP-2 and P15/cRGD, were found to significantly increase growth of human bone-marrow-derived mesenchymal stems cells (hBMSCs) and human umbilical vein endothelial cells (HUVECs). The constructs delivered two cell types: hBMSCs in the shell bioink and HUVECs within the core bioink. Cord-like, natural microvascularization was shown with endothelial cell marker expression as confirmed by immunofluorescence (IF) staining exhibiting tubelike structures. In addition, in vitro skin wound healing activity of the construct showed a ∼twofold rate of wound closure. Overall, c/s 3D-bioprinted, peptide-CD/GelMA constructs provided the appropriate microenvironment for in vitro stem and endothelial cell viability, delivery, and differentiation. We foresee these custom constructs as representing a fundamental step toward engineering larger scale regenerative, prevascularized tissues.


Assuntos
Materiais Biomiméticos/farmacologia , Quitosana/farmacologia , Dextranos/farmacologia , Peptídeos/farmacologia , Impressão Tridimensional , Cicatrização/efeitos dos fármacos , Materiais Biomiméticos/química , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Quitosana/química , Dextranos/química , Humanos , Estrutura Molecular , Tamanho da Partícula , Peptídeos/química , Propriedades de Superfície
9.
Biomed Mater ; 12(3): 035012, 2017 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-28471352

RESUMO

A chitosan/dextran-based (CD) injectable, surgical hydrogel has been developed and shown to be an effective post-operative aid in prevention of scar tissue formation in vivo. The CD hydrogel's effectiveness in a surgical setting prompted an investigation into its capacity as a potential delivery vehicle for bone marrow derived mesenchymal stem cells (BM-MSCs) for regenerative wound healing applications. By housing BM-MSCs within a biocompatible, injectable, hydrogel matrix, viability and protection in cultivation, as well as direct delivery to the damaged site in the host tissue may be achieved. In vitro BM-MSC cell viability in the presence of CD hydrogel was determined by LIVE/DEAD® fluoresence staining. Flow cytometry studies revealed expression of a conventional BM-MSC surface marker profile. A colony forming cell assay showed a slight statistically significant decrease in the number of colonies grown in CD hydrogel as compared to control cells. In addition, BM-MSCs in the CD hydrogel were able to successfully differentiate into adipocytes and osteocytes. In summary, the CD hydrogel supports MSC growth and differentiation; and therefore, may be used as a potential stem cell delivery vehicle for regenerative medicine and tissue engineering applications.


Assuntos
Quitosana/química , Dextranos/química , Hidrogéis/síntese química , Transplante de Células-Tronco Mesenquimais/instrumentação , Células-Tronco Mesenquimais/citologia , Alicerces Teciduais , Adipogenia/fisiologia , Células da Medula Óssea/citologia , Diferenciação Celular , Células Cultivadas , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Transplante de Células-Tronco Mesenquimais/métodos , Osteogênese/fisiologia
10.
Stem Cells Int ; 2015: 192576, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26074972

RESUMO

Cell therapies hold great promise as the next major advance in medical treatment. To enable safe, effective ex vivo culture whilst maintaining cell phenotype, growth media constituents must be carefully controlled. We have used a chemically defined mesenchymal stromal cell culture medium to investigate the influence of different preparations of human serum albumin. We examined two aspects of cell culture, growth rate as measured by population doubling time and colony forming ability which is a representative measure of the stemness of the cell population. Albumin preparations showed comparative differences in both of these criteria. Analysis of the albumin bound fatty acids also showed differences depending on the manufacturing procedure used. We demonstrated that octanoate, an additive used to stabilize albumin during pasteurization, slows growth and lowers colony forming ability during ex vivo culture. Further to this we also found the level of Na(+)/K(+) ATPase, a membrane bound cation pump inhibited by octanoate, is increased in cells exposed to this compound. We conclude that the inclusion of human serum albumin in ex vivo growth media requires careful consideration of not only the source of albumin, but also the associated molecular cargo, for optimal cell growth and behavior.

11.
J Physiol ; 588(Pt 6): 907-22, 2010 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-20083513

RESUMO

Cerebellar Purkinje neurones (PNs) express high levels of the plasma membrane calcium ATPase, PMCA2, a transporter protein critical for the clearance of calcium from excitable cells. Genetic deletion of one PMCA2 encoding gene in heterozygous PMCA2 knock-out (PMCA2(+/-) mice enabled us to determine how PMCA2 influences PN calcium regulation without the complication of the severe morphological changes associated with complete PMCA2 knock-out (PMCA2(-/-) in these cells. The PMCA2(+/-) cerebellum expressed half the normal levels of PMCA2 and this nearly doubled the time taken for PN dendritic calcium transients to recover (mean fast and slow recovery times increased from 70 ms to 110 ms and from 600 ms to 1100 ms). The slower calcium recovery had distinct consequences for PMCA2(+/-) PN physiology. The PNs exhibited weaker climbing fibre responses, prolonged outward Ca(2+)-dependent K(+) current (mean fast and slow recovery times increased from 136 ms to 192 ms and from 595 ms to 1423 ms) and a slower mean frequency of action potential firing (7.4 Hz compared with 15.8 Hz). Our findings were consistent with prolonged calcium accumulation in the cytosol of PMCA2(+/-) Purkinje neurones. Although PMCA2(+/-) mice exhibited outwardly normal behaviour and little change in their gait pattern, when challenged to run on a narrow beam they exhibited clear deficits in hindlimb coordination. Training improved the motor performance of both PMCA2(+/-) and wild-type mice, although PMCA2(+/-) mice were always impaired. We conclude that reduced calcium clearance perturbs calcium dynamics in PN dendrites and that this is sufficient to disrupt the accuracy of cerebellar processing and motor coordination.


Assuntos
Cálcio/metabolismo , Atividade Motora/fisiologia , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Células de Purkinje/metabolismo , Potenciais de Ação/fisiologia , Animais , Comportamento Animal/fisiologia , Dendritos/fisiologia , Marcha/fisiologia , Membro Posterior/fisiopatologia , Camundongos , Camundongos Knockout , Modelos Animais , ATPases Transportadoras de Cálcio da Membrana Plasmática/genética , Canais de Potássio/fisiologia , Células de Purkinje/citologia
12.
Neurobiol Dis ; 31(2): 250-60, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18585048

RESUMO

Secreted amyloid precursor protein-alpha (sAPP alpha) levels are reduced during the pathogenesis of Alzheimer's disease, but the significance of this for neural function is not well understood. Here, we show that intrahippocampal infusion of antibodies targeted to endogenous sAPP alpha reduced long-term potentiation (LTP) in the dentate gyrus of adult rats by approximately 50%. Conversely, infusion of recombinant sAPP alpha dose-dependently increased LTP and facilitated in vitro tetanically evoked NMDA receptor-mediated currents. Pharmacological inhibition of alpha-secretase and other a-disintegrin-and-metalloproteases by TAPI-1 reduced both LTP and tetanus-evoked NMDA receptor-mediated currents in dentate granule cells. Both effects were prevented by co-application of exogenous recombinant sAPP alpha. Similarly, spatial memory was inhibited by intrahippocampal TAPI-1, an effect that was prevented by co-application of recombinant sAPP alpha. Together these findings indicate that endogenous sAPP alpha is a key contributor to synaptic plasticity and spatial memory. Its reduced production in Alzheimer's disease may thus contribute to the clinical memory deficits.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Hipocampo/metabolismo , Potenciação de Longa Duração/fisiologia , Memória/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Percepção Espacial/fisiologia , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/antagonistas & inibidores , Animais , Anticorpos/farmacologia , Dipeptídeos/farmacologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Ácido Glutâmico/metabolismo , Ácidos Hidroxâmicos/farmacologia , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Transtornos da Memória/genética , Transtornos da Memória/metabolismo , Transtornos da Memória/fisiopatologia , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Transmissão Sináptica/fisiologia
13.
J Neurosci Methods ; 164(1): 68-74, 2007 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-17537517

RESUMO

The secreted fragment of the amyloid precursor protein (sAPPalpha) generated following cleavage by alpha-secretase is an important mediator of cell function and is both neurotrophic and neuroprotective. HEK 293T cells have been stably integrated with a fragment of the APP gene to produce and secrete either sAPPalpha, or the alternative cleavage product sAPPbeta. Heparin binding domains on the proteins have been utilised to develop a one-step fast-performance-liquid-chromatography (FPLC) purification of sAPPs from the conditioned media. Immunoblotting analyses with a sAPP specific antibody coupled with highly sensitive silver staining techniques have validated the expression and purification strategy. Functional activity of the purified fragments was demonstrated by their ability to protect COS-7 and SH-SY5Y (neuroblastoma) cells against the adverse effects of glucose deprivation in a cell viability assay. The purified sAPPs also activated the NFkappaB transcription factor in COS-7 cells transfected with a luciferase reporter plasmid, with sAPPalpha the more potent activator as expected. The simple protocol to produce these mammalian expressed proteins will facilitate their use as potential neuropharmacological reagents in the elucidation of biochemical pathways modulated by sAPPs, and in the study of Alzheimer's disease mechanisms in general.


Assuntos
Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/isolamento & purificação , Cromatografia Líquida/métodos , Neuroquímica/métodos , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/isolamento & purificação , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Precursor de Proteína beta-Amiloide/farmacologia , Animais , Especificidade de Anticorpos/imunologia , Células COS , Técnicas de Cultura de Células , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Chlorocebus aethiops , Humanos , Immunoblotting/métodos , Fármacos Neuroprotetores/farmacologia , Estrutura Terciária de Proteína/fisiologia , Coloração pela Prata/métodos , Ativação Transcricional/efeitos dos fármacos
14.
Bioorg Med Chem Lett ; 15(9): 2295-9, 2005 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-15837312

RESUMO

Using a furanylthiazole acetic acid as a starting point, a novel series of benzoxazol-5-yl acetic acid derivatives have been identified as heparanase inhibitors. Several compounds possess an IC50 of approximately 200 nM against heparanase, for example, trans 2-[4-[3-(3,4-dichlorophenylamino)-3-oxo-1-propenyl]-2-fluorophenyl]benzoxazol-5-yl acetic acid (16e). Several of the compounds show anti-angiogenic properties. Improvement to the DMPK profile of compounds has provided compounds of potential use in in vivo models.


Assuntos
Acetatos/farmacologia , Benzoxazóis/farmacologia , Inibidores Enzimáticos/farmacologia , Glucuronidase/antagonistas & inibidores , Tiazóis/farmacologia , Acetatos/síntese química , Acetatos/química , Animais , Benzoxazóis/síntese química , Benzoxazóis/química , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Glucuronidase/sangue , Cinética , Camundongos , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade , Tiazóis/síntese química , Tiazóis/química
15.
Bioorg Med Chem Lett ; 14(12): 3269-73, 2004 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-15149688

RESUMO

A novel class of 2,3-dihydro-1,3-dioxo-1H-isoindole-5-carboxylic acids are described as inhibitors of the endo-beta-glucuronidase heparanase. Several of the compounds, for example, 2-[4-propylamino-5-[5-(4-chloro)phenyl-benzoxazol-2-yl]phenyl]-2,3-dihydro-1,3-dioxo-1H-isoindole-5-carboxylic acid (9c), display potent heparanase inhibitory activity (IC(50) 200-500 nM) and have high selectivity (>100-fold) over human beta-glucuronidase. They also show anti-angiogenic effects. Such compounds should serve as useful biological tools and may provide a basis for the design of novel therapeutic agents.


Assuntos
Ácidos Carboxílicos/química , Inibidores Enzimáticos/química , Glucuronidase/antagonistas & inibidores , Ácidos Carboxílicos/farmacologia , Inibidores Enzimáticos/farmacologia , Glucuronidase/metabolismo , Humanos
16.
Prog Neurobiol ; 70(1): 1-32, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12927332

RESUMO

Amyloid-beta precursor protein (APP) is a membrane-spanning protein with a large extracellular domain and a much smaller intracellular domain. It is the source of the amyloid-beta (Abeta) peptide found in neuritic plaques of Alzheimer's disease (AD) patients. Because Abeta shows neurotoxic properties, and because familial forms of AD promote Abeta accumulation, a massive international research effort has been aimed at understanding the mechanisms of Abeta generation, catabolism and toxicity. APP, however, is an extremely complex molecule that may be a functionally important molecule in its full-length configuration, as well as being the source of numerous fragments with varying effects on neural function. For example, one fragment derived from the non-amyloidogenic processing pathway, secreted APPalpha (sAPPalpha), is neuroprotective, neurotrophic and regulates cell excitability and synaptic plasticity, while Abeta appears to exert opposing effects. Less is known about the neural functions of other fragments, but there is a growing interest in understanding the basic biology of APP as it has become recognized that alterations in the functional activity of the APP fragments during disease states will have complex effects on cell function. Indeed, it has been proposed that reductions in the level or activity of certain APP fragments, in addition to accumulation of Abeta, may play a critical role in the cognitive dysfunction associated with AD, particularly early in the course of the disease. To test and modify this hypothesis, it is important to understand the roles that full-length APP and its fragments normally play in neuronal structure and function. Here we review evidence addressing these fundamental questions, paying particular attention to the contributions that APP fragments play in synaptic transmission and neural plasticity, as these may be key to understanding their effects on learning and memory. It is clear from this literature that APP fragments, including Abeta, can exert a powerful regulation of key neural functions including cell excitability, synaptic transmission and long-term potentiation, both acutely and over the long-term. Furthermore, there is a small but growing literature confirming that these fragments correspondingly regulate behavioral learning and memory. These data indicate that a full account of cognitive dysfunction in AD will need to incorporate the actions of the full complement of APP fragments. To this end, there is an urgent need for a dedicated research effort aimed at understanding the behavioral consequences of altered levels and activity of the different APP fragments as a result of experience and disease.


Assuntos
Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/metabolismo , Memória/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo , Doença de Alzheimer/fisiopatologia , Precursor de Proteína beta-Amiloide/fisiologia , Animais , Humanos , Conformação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Transmissão Sináptica/fisiologia
17.
Int J Cancer ; 97(4): 416-24, 2002 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-11802201

RESUMO

The mRNA levels of hyal-1, hyal-2, LUCA3 and PH20, the 4 hyaluronidases with demonstrated endoglucosaminidase activity, were extensively profiled in normal and tumor tissues and cell lines, using dot blot analysis and quantitative PCR. In normal tissues, hyal-1, hyal-2 and LUCA3 all showed unique patterns of mRNA expression, but were generally of widespread distribution, whereas PH20 mRNA was restricted to testes. In a small set of breast tumor samples, no elevations in hyal-1, hyal-2 or LUCA3 mRNA were seen. Hyaluronidase activity measured by a novel assay or zymography was also not elevated in sera from a number of breast cancer patients, compared to sera from normal volunteers. In ex vivo xenograft tumor cell lines, however, hyal-1 or hyal-2 mRNA levels were frequently elevated, whereas LUCA3 was only infrequently elevated and PH20 not at all. Two cell lines were engineered to overexpress hyal-1: a breast cancer line (CAL51) and a prostate cancer line (PC3M). Although the in vitro properties of the hyal-1 overexpressing cell lines were indistinguishable from the parental cells, the orthotopic growth of hyal-1 expressing PC3M cells in nu/nu mice resulted in significantly increased numbers of metastases, supportive of a role for hyal-1 in extravasation and metastatic tumor formation in this model of prostate cancer.


Assuntos
Adenocarcinoma/genética , Perfilação da Expressão Gênica , Hialuronoglucosaminidase/genética , Proteínas de Neoplasias/genética , Neoplasias da Próstata/genética , Adenocarcinoma/enzimologia , Adenocarcinoma/patologia , Animais , Mama/enzimologia , Neoplasias da Mama/sangue , Neoplasias da Mama/enzimologia , Indução Enzimática , Feminino , Genes , Humanos , Hialuronoglucosaminidase/biossíntese , Masculino , Camundongos , Camundongos Nus , Família Multigênica , Invasividade Neoplásica , Metástase Neoplásica , Proteínas de Neoplasias/biossíntese , Transplante de Neoplasias , Especificidade de Órgãos , Neoplasias da Próstata/enzimologia , Neoplasias da Próstata/patologia , RNA Mensageiro/biossíntese , RNA Neoplásico/biossíntese , Proteínas Recombinantes de Fusão/análise , Frações Subcelulares/enzimologia , Testículo/enzimologia , Transplante Heterólogo , Células Tumorais Cultivadas/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...