Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Biomater Sci Eng ; 9(6): 3699-3711, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37232093

RESUMO

Smart polypropylene (PP) hernia meshes were proposed to detect surgical infections and to regulate cell attachment-modulated properties. For this purpose, lightweight and midweight meshes were modified by applying a plasma treatment for subsequent grafting of a thermosensitive hydrogel, poly(N-isopropylacrylamide) (PNIPAAm). However, both the physical treatment with plasma and the chemical processes required for the covalent incorporation of PNIPAAm can modify the mechanical properties of the mesh and thus have an influence in hernia repair procedures. In this work, the mechanical performance of plasma-treated and hydrogel-grafted meshes preheated at 37 °C has been compared with standard meshes using bursting and the suture pull out tests. Furthermore, the influence of the mesh architecture, the amount of grafted hydrogel, and the sterilization process on such properties have been examined. Results reveal that although the plasma treatment reduces the bursting and suture pull out forces, the thermosensitive hydrogel improves the mechanical resistance of the meshes. Moreover, the mechanical performance of the meshes coated with the PNIPAAm hydrogel is not influenced by ethylene oxide gas sterilization. Micrographs of the broken meshes evidence the role of the hydrogel as reinforcing coating for the PP filaments. Overall, results confirm that the modification of PP medical textiles with a biocompatible thermosensitive hydrogel do not affect, and even improve, the mechanical requirements necessary for the implantation of these prostheses in vivo.


Assuntos
Polipropilenos , Telas Cirúrgicas , Polipropilenos/química , Esterilização/métodos , Próteses e Implantes , Hidrogéis/química
2.
Macromol Biosci ; 23(9): e2300024, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37119469

RESUMO

Virtually, all implantable medical devices are susceptible to infection. As the main healthcare issue concerning implantable devices is the elevated risk of infection, different strategies based on the coating or functionalization of biomedical devices with antiseptic agents or antibiotics are proposed. In this work, an alternative approach is presented, which consists of the functionalization of implantable medical devices with sensors capable of detecting infection at very early stages through continuous monitoring of the bacteria metabolism. This approach, which is implemented in surgical sutures as a representative case of implantable devices susceptible to bacteria colonization, is expected to minimize the risk of worsening the patient's clinical condition. More specifically, non-absorbable polypropylene/polyethylene (PP/PE) surgical sutures are functionalized with conducting polymers using a combination of low-pressure oxygen plasma, chemical oxidative polymerization, and anodic polymerization, to detect metabolites coming from bacteria respiration. Functionalized suture yarns are used for real-time monitoring of bacteria growth, demonstrating the potential of this strategy to fight against infections.


Assuntos
Infecções Bacterianas , Infecção da Ferida Cirúrgica , Humanos , Infecção da Ferida Cirúrgica/prevenção & controle , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Polímeros , Bactérias , Suturas
3.
ACS Biomater Sci Eng ; 9(2): 1104-1115, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36693280

RESUMO

Isotactic polypropylene (i-PP) nonabsorbable surgical meshes are modified by incorporating a conducting polymer (CP) layer to detect the adhesion and growth of bacteria by sensing the oxidation of nicotinamide adenine dinucleotide (NADH), a metabolite produced by the respiration reactions of such microorganisms, to NAD+. A three-step process is used for such incorporation: (1) treat pristine meshes with low-pressure O2 plasma; (2) functionalize the surface with CP nanoparticles; and (3) coat with a homogeneous layer of electropolymerized CP using the nanoparticles introduced in (2) as polymerization nuclei. The modified meshes are stable and easy to handle and also show good electrochemical response. The detection by cyclic voltammetry of NADH within the interval of concentrations reported for bacterial cultures is demonstrated for the two modified meshes. Furthermore, Staphylococcus aureus and both biofilm-positive (B+) and biofilm-negative (B-) Escherichia coli cultures are used to prove real-time monitoring of NADH coming from aerobic respiration reactions. The proposed strategy, which offers a simple and innovative process for incorporating a sensor for the electrochemical detection of bacteria metabolism to currently existing surgical meshes, holds considerable promise for the future development of a new generation of smart biomedical devices to fight against post-operative bacterial infections.


Assuntos
Infecções Bacterianas , Nanopartículas , Humanos , NAD/química , Telas Cirúrgicas , Oxirredução , Polímeros/química
4.
Mater Horiz ; 9(6): 1566-1576, 2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35357375

RESUMO

Hydroxyapatite (HAp) is a well-known ceramic material widely used in the biomedical field. This review summarizes the very recent developments on permanently polarized HAp (pp-HAp), a HAp variety with tuned electrical properties that confer remarkable catalytic activity. pp-HAp is obtained by applying a thermal stimulation polarization process (TSP), which consists on a DC electric voltage of 500 V at 1000 °C, to previously sintered HAp. The TSP not only increases the crystallinity, reducing the defects in the crystal lattice, but also creates charges that accumulate at the crystalline boundaries and at the surface of microscopic grains, boosting the electrical conductivity. Finally, the successful utilization of pp-HAp in the catalytic fixation of carbon and nitrogen from CO2 and N2 gases, respectively, is reported and the formation of different products of chemical interest (e.g. amino acids, ethanol and ammonium) as a function of the reaction conditions (i.e. feeding gases and presence/absence of UV illumination) and catalyst plasticity is discussed. pp-HAp exhibits important advantages with respect to other consolidated catalysts, which drastically increases the final energetic net balance of the reactions.


Assuntos
Carbono , Durapatita , Cerâmica , Durapatita/química , Gases , Fixação de Nitrogênio
5.
Mol Divers ; 26(6): 3143-3155, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35179698

RESUMO

Oxidative stress, which occurs when an organism is exposed to an adverse stimulus that results in a misbalance of antioxidant and pro-oxidants species, is the common denominator of diseases considered as a risk factor for SARS-CoV-2 lethality. Indeed, reactive oxygen species caused by oxidative stress have been related to many virus pathogenicity. In this work, simulations have been performed on the receptor binding domain of SARS-CoV-2 spike glycoprotein to study what residues are more susceptible to be attacked by ·OH, which is one of the most reactive radicals associated to oxidative stress. The results indicate that isoleucine (ILE) probably plays a crucial role in modification processes driven by radicals. Accordingly, QM/MM-MD simulations have been conducted to study both the ·OH-mediated hydrogen abstraction of ILE residues and the induced modification of the resulting ILE radical through hydroxylation or nitrosylation reactions. All in all, in silico studies show the importance of the chemical environment triggered by oxidative stress on the modifications of the virus, which is expected to help for foreseeing the identification or development of antioxidants as therapeutic drugs.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Humanos , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2 , Sítios de Ligação , Simulação de Dinâmica Molecular , Ligação Proteica , Estresse Oxidativo
6.
Colloids Surf B Biointerfaces ; 213: 112400, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35158221

RESUMO

The influence of the properties of different solid substrates on the tethering of two antibodies, IgG1-CR3022 and IgG1-S309, which were specifically engineered for the detection of SARS-CoV-2, has been examined at the molecular level using conventional and accelerated Molecular Dynamics (cMD and aMD, respectively). Two surfaces with very different properties and widely used in immunosensors for diagnosis, amorphous silica and the most stable facet of the face-centered cubic gold structure, have been considered. The effects of such surfaces on the structure and orientation of the immobilized antibodies have been determined by quantifying the tilt and hinge angles that describe the orientation and shape of the antibody, respectively, and the dihedrals that measure the relative position of the antibody arms with respect to the surface. Results show that the interactions with amorphous silica, which are mainly electrostatic due to the charged nature of the surface, help to preserve the orientation and structure of the antibodies, especially of the IgG1-CR3022, indicating that the primary sequence of those antibodies also plays some role. Instead, short-range van der Waals interactions with the inert gold surface cause a higher degree tilting and fraying of the antibodies with respect to amorphous silica. The interactions between the antibodies and the surface also affect the correlation among the different angles and dihedrals, which increases with their strength. Overall, results explain why amorphous silica substrates are frequently used to immobilize antibodies in immunosensors.


Assuntos
Técnicas Biossensoriais , COVID-19 , Anticorpos Monoclonais , Anticorpos Neutralizantes/química , Técnicas Biossensoriais/métodos , COVID-19/diagnóstico , Ouro/química , Humanos , Imunoensaio/métodos , Imunoglobulina G , SARS-CoV-2 , Dióxido de Silício
7.
ACS Appl Nano Mater ; 5(6): 8526-8536, 2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-36910876

RESUMO

Polarized hydroxyapatite (HAp) scaffolds with customized architecture at the nanoscale have been presented as a green alternative to conventional catalysts used for carbon and dinitrogen fixation. HAp printable inks with controlled nanoporosity and rheological properties have been successfully achieved by incorporating Pluronic hydrogel. Nanoporous scaffolds with good mechanical properties, as demonstrated by means of the nanoindentation technique, have been obtained by a sintering treatment and the posterior thermally induced polarization process. Their catalytic activity has been evaluated by considering three different key reactions (all in the presence of liquid water): (1) the synthesis of amino acids from gas mixtures of N2, CO2, and CH4; (2) the production of ethanol from gas mixtures of CO2 and CH4; and (3) the synthesis of ammonia from N2 gas. Comparison of the yields obtained by using nanoporous and nonporous (conventional) polarized HAp catalysts shows that both the nanoporosity and water absorption capacity of the former represent a drawback when the catalytic reaction requires auxiliary coating layers, as for example for the production of amino acids. This is because the surface nanopores achieved by incorporating Pluronic hydrogel are completely hindered by such auxiliary coating layers. On the contrary, the catalytic activity improves drastically for reactions in which the HAp-based scaffolds with enhanced nanoporosity are used as catalysts. More specifically, the carbon fixation from CO2 and CH4 to yield ethanol improves by more than 3000% when compared with nonporous HAp catalyst. Similarly, the synthesis of ammonia by dinitrogen fixation increases by more than 2000%. Therefore, HAp catalysts based on nanoporous scaffolds exhibit an extraordinary potential for scalability and industrial utilization for many chemical reactions, enabling a feasible green chemistry alternative to catalysts based on heavy metals.

8.
Biochimie ; 193: 90-102, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34710552

RESUMO

Vaccination against SARS-CoV-2 just started in most of the countries. However, the development of specific vaccines against SARS-CoV-2 is not the only approach to control the virus and monoclonal antibodies (mAbs) start to merit special attention as a therapeutic option to treat COVID-19 disease. Here, the main conformations and interactions between the receptor-binding domain (RBD) of spike glycoprotein of SARS-CoV-2 (S protein) with two mAbs (CR3022 and S309) and the ACE2 cell receptor are studied as the main representatives of three different epitopes on the RBD of S protein. The combined approach of 1 µs accelerated molecular dynamics (aMD) and ab-initio hybrid molecular dynamics is used to identify the most predominant interactions under physiological conditions. Results allow to determine the main receptor-binding mapping, hydrogen bonding network and salt bridges in the most populated antigen-antibody interface conformations. The deep knowledge on the protein-protein interactions involving mAbs and ACE2 receptor with the spike glycoprotein of SARS-CoV-2 increases background knowledge to speed up the development of new vaccines and therapeutic drugs.


Assuntos
Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/imunologia , COVID-19/terapia , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/imunologia , COVID-19/imunologia , Epitopos/química , Epitopos/imunologia , Humanos , Ligação Proteica , Domínios Proteicos , Domínios e Motivos de Interação entre Proteínas
9.
Comput Struct Biotechnol J ; 19: 5525-5534, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34642596

RESUMO

Engineered immunoglobulin-G molecules (IgGs) are of wide interest for the development of detection elements in protein-based biosensors with clinical applications. The strategy usually employed for the de novo design of such engineered IgGs consists on merging fragments of the three-dimensional structure of a native IgG, which is immobilized on the biosensor surface, and of an antibody with an exquisite target specificity and affinity. In this work conventional and accelerated classical molecular dynamics (cMD and aMD, respectively) simulations have been used to propose two IgG-like antibodies for COVID-19 detection. More specifically, the crystal structure of the IgG1 B12 antibody, which inactivates the human immunodeficiency virus-1, has been merged with the structure of the antibody CR3022 Fab tightly bounded to SARS-CoV-2 receptor-binding domain (RBD) and the structure of the S309 antibody Fab fragment complexed with SARS-CoV-2 RBD. The two constructed antibodies, named IgG1-CR3022 and IgG1-S309, respectively, have been immobilized on a stable gold surface through a linker. Analyses of the influence of both the merging strategy and the substrate on the stability of the two constructs indicate that the IgG1-S309 antibody better preserves the neutralizing structure than the IgG1-CR3022 one. Overall, results indicate that the IgG1-S309 is appropriated for the generation of antibody based sensors for COVID-19 diagnosis.

10.
Cancers (Basel) ; 13(11)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071374

RESUMO

Microcalcifications are detected through mammography screening and, depending on their morphology and distribution (BI-RADS classification), they can be considered one of the first indicators of suspicious cancer lesions. However, the formation of hydroxyapatite (HAp) calcifications and their relationship with malignancy remains unknown. In this work, we report the most detailed three-dimensional biochemical analysis of breast cancer microcalcifications to date, combining 3D Raman spectroscopy imaging and advanced multivariate analysis in order to investigate in depth the molecular composition of HAp calcifications found in 26 breast cancer tissue biopsies. We demonstrate that DNA has been naturally adsorbed and encapsulated inside HAp microcalcifications. Furthermore, we also show the encapsulation of other relevant biomolecules in HAp calcifications, such as lipids, proteins, cytochrome C and polysaccharides. The demonstration of natural DNA biomineralization, particularly in the tumor microenvironment, represents an unprecedented advance in the field, as it can pave the way to understanding the role of HAp in malignant tissues.

11.
Comput Struct Biotechnol J ; 19: 1848-1862, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33841750

RESUMO

Rapid spread of SARS-CoV-2 virus have boosted the need of knowledge about inactivation mechanisms to minimize the impact of COVID-19 pandemic. Recent studies have shown that SARS-CoV-2 virus can be disabled by heating, the exposure time for total inactivation depending on the reached temperature (e.g. more than 45 min at 329 K or less than 5 min at 373 K. In spite of recent crystallographic structures, little is known about the molecular changes induced by the temperature. Here, we unravel the molecular basis of the effect of the temperature over the SARS-CoV-2 spike glycoprotein, which is a homotrimer with three identical monomers, by executing atomistic molecular dynamics (MD) simulations at 298, 310, 324, 338, 358 and 373 K. Furthermore, both the closed down and open up conformational states, which affect the accessibility of receptor binding domain, have been considered. Our results suggest that the spike homotrimer undergoes drastic changes in the topology of the hydrogen bonding interactions and important changes on the secondary structure of the receptor binding domain (RBD), while electrostatic interactions (i.e. salt bridges) are mainly preserved. The proposed inactivation mechanism has important implications for engineering new approaches to fight the SARS-CoV-2 coronavirus, as for example, cleaving or reorganizing the hydrogen bonds through chaotropic agents or nanoparticles with local surface resonant plasmon effect.

12.
Chem Commun (Camb) ; 57(42): 5163-5166, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-33900306

RESUMO

Conversion of CO2 into valuable chemicals is not only a very challenging topic but also a socially demanding issue. In this work, permanently polarized hydroxyapatite obtained using a thermal stimulated polarization process is proposed as a highly selective catalyst for green production of ethanol starting from CO2 and CH4.

13.
Adv Healthc Mater ; 10(14): e2100425, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33893723

RESUMO

Rapid detection of bacterial presence on implantable medical devices is essential to prevent biofilm formation, which consists of densely packed bacteria colonies able to withstand antibiotic-mediated killing. In this work, a smart approach is presented to integrate electrochemical sensors for detecting bacterial infections in biomedical implants made of isotactic polypropylene (i-PP) using chemical assembly. The electrochemical detection is based on the capacity of conducting polymers (CPs) to detect extracellular nicotinamide adenine dinucleotide (NADH) released from cellular respiration of bacteria, which allows distinguishing prokaryotic from eukaryotic cells. Oxygen plasma-functionalized free-standing i-PP, coated with a layer (≈1.1 µm in thickness) of CP nanoparticles obtained by oxidative polymerization, is used as working electrode for the anodic polymerization of a second CP layer (≈8.2 µm in thickness), which provides very high electrochemical activity and stability. The resulting layered material, i-PPf /CP2 , detects the electro-oxidation of NADH in physiological media with a sensitivity 417 µA cm-2 and a detection limit up to 0.14 × 10-3 m, which is below the concentration of extracellular NADH found for bacterial cultures of biofilm-positive and biofilm-negative strains.


Assuntos
Técnicas Biossensoriais , Polímeros , Bactérias , Eletrodos , NAD , Polipropilenos
14.
Biomater Sci ; 9(8): 3040-3050, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33666604

RESUMO

The use of surgical meshes to reinforce damaged internal soft tissues has been instrumental for successful hernia surgery; a highly prevalent condition affecting yearly more than 20 million patients worldwide. Intraperitoneal adhesions between meshes and viscera are one of the most threatening complications, often implying reoperation or side effects such as chronic pain and bowel perforation. Despite recent advances in the optimization of mesh porous structure, incorporation of anti-adherent coatings or new approaches in the mesh fixation systems, clinicians and manufacturers are still pursuing an optimal material to improve the clinical outcomes at a cost-effective ratio. Here, bacterial nanocellulose (BNC), a bio-based polymer, is evaluated as a soft tissue reinforcement material regarding mechanical properties and in vivo anti-adhesive performance. A double-layer BNC laminate proved sufficient to meet the standards of mechanical resistance for abdominal hernia reinforcement meshes. BNC-polypropylene (BNC-PP) composites incorporating a commercial mesh have also been prepared. The in vivo study of implanted BNC patches in a rabbit model demonstrated excellent anti-adherent characteristics of this natural nanofibrous polymer 21-days after implantation and the animals were asymptomatic after the surgery. BNC emerges as a novel and versatile hernioplasty biomaterial with outstanding mechanical and anti-adherent characteristics.


Assuntos
Hérnia Abdominal , Telas Cirúrgicas , Animais , Hérnia Abdominal/cirurgia , Herniorrafia , Humanos , Polipropilenos , Coelhos , Aderências Teciduais
15.
Adv Healthc Mater ; 10(7): e2001636, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33336558

RESUMO

Conducting polymers have been increasingly used as biologically interfacing electrodes for biomedical applications due to their excellent and fast electrochemical response, reversible doping-dedoping characteristics, high stability, easy processability, and biocompatibility. These advantageous properties can be used for the rapid detection and eradication of infections associated to bacterial growth since these are a tremendous burden for individual patients as well as the global healthcare system. Herein, a smart nanotheranostic electroresponsive platform, which consists of chloramphenicol (CAM)-loaded in poly(3,4-ethylendioxythiophene) nanoparticles (PEDOT/CAM NPs) for concurrent release of the antibiotic and real-time monitoring of bacterial growth is presented. PEDOT/CAM NPs, with an antibiotic loading content of 11.9 ± 1.3% w/w, are proved to inhibit the growth of Escherichia coli and Streptococcus sanguinis due to the antibiotic release by cyclic voltammetry. Furthermore, in situ monitoring of bacterial activity is achieved through the electrochemical detection of ß-nicotinamide adenine dinucleotide, a redox active specie produced by the microbial metabolism that diffuse to the extracellular medium. According to these results, the proposed nanotheranostic platform has great potential for real-time monitoring of the response of bacteria to the released antibiotic, contributing to the evolution of the personalized medicine.


Assuntos
Nanopartículas , Polímeros , Antibacterianos/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes , Humanos , Nanomedicina Teranóstica
16.
J Mater Chem B ; 8(38): 8864-8877, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-33026390

RESUMO

Development of smart functionalized materials for tissue engineering has attracted significant attention in recent years. In this work we have functionalized a free-standing film of isotactic polypropylene (i-PP), a synthetic polymer that is typically used for biomedical applications (e.g. fabrication of implants), for engineering a 3D all-polymer flexible interface that enhances cell proliferation by a factor of ca. three. A hierarchical construction process consisting of three steps was engineered as follows: (1) functionalization of i-PP by applying a plasma treatment, resulting in i-PPf; (2) i-PPf surface coating with a layer of polyhydroxymethy-3,4-ethylenedioxythiophene nanoparticles (PHMeEDOT NPs) by in situ chemical oxidative polymerization of HMeEDOT; and (3) deposition on the previously activated and PHMeEDOT NPs coated i-PP film (i-PPf/NP) of a graft conjugated copolymer, having a poly(3,4-ethylenedioxythiophene) (PEDOT) backbone, and randomly distributed short poly(ε-caprolactone) (PCL) side chains (PEDOT-g-PCL), as a coating layer of ∼9 µm in thickness. The properties of the resulting bioplatform, which can be defined as a robust macroscopic composite coated with a "molecular composite", were investigated in detail, and both adhesion and proliferation of two human cell lines have been evaluated, as well. The results demonstrate that the incorporation of the PEDOT-g-PCL layer significantly improves cell attachment and cell growth not only when compared to i-PP but also with respect to the same platform coated with only PEDOT, constructed in a similar manner, as a control.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/química , Sobrevivência Celular/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/química , Polímeros/química , Polipropilenos/química , Alicerces Teciduais/química , Compostos Bicíclicos Heterocíclicos com Pontes/síntese química , Adesão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Condutividade Elétrica , Células HeLa , Humanos , Nanopartículas/química , Maleabilidade , Poliésteres/síntese química , Poliésteres/química , Polímeros/síntese química , Engenharia Tecidual/métodos , Molhabilidade
17.
Polymers (Basel) ; 12(9)2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32899844

RESUMO

Fibers of poly(4-hydroxybutyrate) (P4HB) have been submitted to both hydrolytic and enzymatic degradation media in order to generate samples with different types and degrees of chain breakage. Random chain hydrolysis is clearly enhanced by varying temperatures from 37 to 55 °C and is slightly dependent on the pH of the medium. Enzymatic attack is a surface erosion process with significant solubilization as a consequence of a preferent stepwise degradation. Small angle X-ray diffraction studies revealed a peculiar supramolecular structure with two different types of lamellar stacks. These were caused by the distinct shear stresses that the core and the shell of the fiber suffered during the severe annealing process. External lamellae were characterized by surfaces tilted 45° with respect to the stretching direction and a higher thickness, while the inner lamellae were more imperfect and had their surfaces perpendicularly oriented to the fiber axis. In all cases, WAXD data indicated that the chain molecular axis was aligned with the fiber axis and molecules were arranged according to a single orthorhombic structure. A gradual change of the microstructure was observed as a function of the progress of hydrolysis while changes were not evident under an enzymatic attack. Hydrolysis mainly affected the inner lamellar stacks as revealed by the direct SAXS patterns and the analysis of correlation functions. Both lamellar crystalline and amorphous thicknesses slightly increased as well as the electronic contrast between amorphous and crystalline regions. Thermal treatments of samples exposed to the hydrolytic media revealed microstructural changes caused by degradation, with the inner lamellae being those that melted faster.

18.
J Mater Chem B ; 8(5): 1049-1059, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-31939983

RESUMO

Herein, a versatile bilayer system, composed by a polypropylene (PP) mesh and a covalently bonded poly(N-isopropylacrylamide) (PNIPAAm) hydrogel, is reported. The cell adhesion mechanism was successfully modulated by controlling the architecture of the hydrogel in terms of duration of PNIPAAm grafting time, crosslinker content, and temperature of material exposure in PBS solutions (below and above the LCST of PNIPAAm). The best in vitro results with fibroblast (COS-1) and epithelial (MCF-7) cells was obtained with a mesh modified with a porous iPP-g-PNIPAAm bilayer system, prepared via PNIPAAm grafting for 2 h at the lowest N,N'-methylene bis(acrylamide) (MBA) concentration (1 mM). Under these conditions, the detachment of the fibroblast-like cells was 50% lower than that of the control, after 7 days of cell incubation, which represents a high de-adhesion of cells in a short period. Moreover, the whole system showed excellent stability in dry or wet media, proving that the thermosensitive hydrogel was well adhered to the polymer surface, after PP fibre activation by cold plasma. This study provides new insights on the development of anti-adherent meshes for abdominal hernia repair.


Assuntos
Hérnia Abdominal/tratamento farmacológico , Hérnia Abdominal/cirurgia , Polipropilenos/farmacologia , Telas Cirúrgicas , Adesão Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Teste de Materiais , Tamanho da Partícula , Polipropilenos/síntese química , Polipropilenos/química , Propriedades de Superfície
19.
Langmuir ; 35(46): 14782-14790, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31647245

RESUMO

Semipermanently polarized hydroxyapatite, named SP/HAp(w), is obtained by applying a constant dc electric field of 1-10 kV/cm at 300-850 °C to the samples previously sintered in water vapor, while permanently polarized hydroxyapatite, PP/HAp(a), is produced by applying a dc electric field of 3 kV/cm at 1000 °C to the samples sintered in air. SP/HAp(w) has been used for biomedical applications, while PP/HAp(a) has been proved to be a valuable catalyst for N2 and CO2 fixation. In this work, structural differences between SP/HAp(w) and PP/HAp(a) have been ascertained using Raman microscopy, wide-angle X-ray diffraction, scanning electronic microscopy, high-resolution transmission electron microscopy, and grazing incidence X-ray diffraction. Results prove the existence of crystal distortion in the form of amorphous calcium phosphate and ß-tricalcium phosphate (ß-TCP) phases close to the surface because of the atmosphere used in the sintering process. The existence of an amorphous layer in the surface and the phase transition through ß-TCP of SP/HAp(w) are the structural factors responsible for the differences with respect to PP/HAp(a). Moreover, a superstructure has been identified in PP/HAp(a) samples, which could be another structural factor associated with enhanced conductivity, permanent polarization, and catalytic activity of this material.

20.
Int J Mol Sci ; 20(20)2019 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-31614695

RESUMO

Chloramphenicol (CAM) has been encapsulated into hydroxyapatite nanoparticles displaying different morphologies and crystallinities. The process was based on typical precipitation of solutions containing phosphate and calcium ions and the addition of CAM once the hydroxyapatite nuclei were formed. This procedure favored a disposition of the drug into the bulk parts of the nanoparticles and led to a fast release in aqueous media. Clear antibacterial activity was derived, being slightly higher for the amorphous samples due to their higher encapsulation efficiency. Polylactide (PLA) microfibers incorporating CAM encapsulated in hydroxyapatite nanoparticles were prepared by the electrospinning technique and under optimized conditions. Drug release experiments demonstrated that only a small percentage of the loaded CAM could be delivered to an aqueous PBS medium. This amount was enough to render an immediate bacteriostatic effect without causing a cytotoxic effect on osteoblast-like, fibroblasts, and epithelial cells. Therefore, the prepared scaffolds were able to retain CAM-loaded nanoparticles, being a reservoir that should allow a prolonged release depending on the polymer degradation rate. The studied system may have promising applications for the treatment of cancer since CAM has been proposed as a new antitumor drug.


Assuntos
Antibacterianos/farmacologia , Cloranfenicol/farmacologia , Durapatita/química , Poliésteres/química , Animais , Antibacterianos/química , Cápsulas , Linhagem Celular , Cloranfenicol/química , Chlorocebus aethiops , Escherichia coli/efeitos dos fármacos , Nanopartículas , Tamanho da Partícula , Staphylococcus aureus/efeitos dos fármacos , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...