Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Microbiol ; 8(9): 1619-1633, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37500801

RESUMO

CRISPR-Cas systems defend prokaryotic cells from invasive DNA of viruses, plasmids and other mobile genetic elements. Here, we show using metagenomics, metatranscriptomics and single-cell genomics that CRISPR systems of widespread, uncultivated archaea can also target chromosomal DNA of archaeal episymbionts of the DPANN superphylum. Using meta-omics datasets from Crystal Geyser and Horonobe Underground Research Laboratory, we find that CRISPR spacers of the hosts Candidatus Altiarchaeum crystalense and Ca. A. horonobense, respectively, match putative essential genes in their episymbionts' genomes of the genus Ca. Huberiarchaeum and that some of these spacers are expressed in situ. Metabolic interaction modelling also reveals complementation between host-episymbiont systems, on the basis of which we propose that episymbionts are either parasitic or mutualistic depending on the genotype of the host. By expanding our analysis to 7,012 archaeal genomes, we suggest that CRISPR-Cas targeting of genomes associated with symbiotic archaea evolved independently in various archaeal lineages.


Assuntos
Archaea , Simbiose , Archaea/genética , Archaea/metabolismo , Simbiose/genética , Genômica , Plasmídeos , DNA/metabolismo
2.
ISME J ; 17(10): 1789-1792, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37468677

RESUMO

Despite important ecological roles posited for virocells (i.e., cells infected with viruses), studying individual cells in situ is technically challenging. We introduce here a novel correlative microscopic approach to study the ecophysiology of virocells. By conducting concerted virusFISH, 16S rRNA FISH, and scanning electron microscopy interrogations of uncultivated archaea, we linked morphologies of various altiarchaeal cells to corresponding phylogenetic signals and indigenous virus infections. While uninfected cells exhibited moderate separation between fluorescence signals of ribosomes and DNA, virocells displayed complete cellular segregation of chromosomal DNA from viral DNA, the latter co-localizing with host ribosome signals. A similar spatial separation was observed in dividing cells, with viral signals congregating near ribosomes at the septum. These observations suggest that replication of these uncultivated viruses occurs alongside host ribosomes, which are used to generate the required proteins for virion assembly. Heavily infected cells sometimes displayed virus-like particles attached to their surface, which agree with virus structures in cells observed via transmission electron microscopy. Consequently, this approach is the first to link genomes of uncultivated viruses to their respective structures and host cells. Our findings shed new light on the complex ecophysiology of archaeal virocells in deep subsurface biofilms and provide a solid framework for future in situ studies of virocells.


Assuntos
Archaea , Vírus , Archaea/genética , Filogenia , RNA Ribossômico 16S/genética , Vírus/genética , DNA Viral/genética
3.
Viruses ; 15(4)2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-37112890

RESUMO

Spatial and temporal distribution of lytic viruses in deep groundwater remains unexplored so far. Here, we tackle this gap of knowledge by studying viral infections of Altivir_1_MSI in biofilms dominated by the uncultivated host Candidatus Altiarchaeum hamiconexum sampled from deep anoxic groundwater over a period of four years. Using virus-targeted direct-geneFISH (virusFISH) whose detection efficiency for individual viral particles was 15%, we show a significant and steady increase of virus infections from 2019 to 2022. Based on fluorescence micrographs of individual biofilm flocks, we determined different stages of viral infections in biofilms for single sampling events, demonstrating the progression of infection of biofilms in deep groundwater. Biofilms associated with many host cells undergoing lysis showed a substantial accumulation of filamentous microbes around infected cells probably feeding off host cell debris. Using 16S rRNA gene sequencing across ten individual biofilm flocks from one sampling event, we determined that the associated bacterial community remains relatively constant and was dominated by sulfate-reducing members affiliated with Desulfobacterota. Given the stability of the virus-host interaction in these deep groundwater samples, we postulate that the uncultivated virus-host system described herein represents a suitable model system for studying deep biosphere virus-host interactions in future research endeavors.


Assuntos
Água Subterrânea , Vírus , Archaea/genética , RNA Ribossômico 16S/genética , Bactérias/genética , Biofilmes , Vírus/genética
5.
mSystems ; 7(1): e0150521, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35166561

RESUMO

Raman microspectroscopy has been used to thoroughly assess growth dynamics and heterogeneity of prokaryotic cells, yet little is known about how the chemistry of individual cells changes during infection with virulent viruses, resulting in so-called virocells. Here, we investigate biochemical changes of bacterial and archaeal cells of three different species in laboratory cultures before and after addition of their respective viruses using single-cell Raman microspectroscopy. By applying multivariate statistics, we identified significant differences in the spectra of single cells with/without addition of virulent dsRNA phage (phi6) for Pseudomonas syringae. A general ratio of wavenumbers that contributed the greatest differences in the recorded spectra was defined as an indicator for virocells. Based on reference spectra, this difference is likely attributable to an increase in nucleic acid versus protein ratio of virocells. This method also proved successful for identification of Bacillus subtilis cells infected with the double-stranded DNA (dsDNA) phage phi29, displaying a decrease in respective ratio, but failed for archaeal virocells (Methanosarcina mazei with the dsDNA methanosarcina spherical virus) due to autofluorescence. Multivariate and univariate analyses suggest that Raman spectral data of infected cells can also be used to explore the complex biology behind viral infections of bacteria. Using this method, we confirmed the previously described two-stage infection of P. syringae's phi6 and that infection of B. subtilis with phi29 results in a stress response within single cells. We conclude that Raman microspectroscopy is a promising tool for chemical identification of Gram-positive and Gram-negative virocells undergoing infection with virulent DNA or RNA viruses. IMPORTANCE Viruses are highly diverse biological entities shaping many ecosystems across Earth. However, understanding the infection of individual microbial cells and the related biochemical changes remains limited. Using Raman microspectroscopy in conjunction with univariate and multivariate statistics, we established a marker for identification of infected Gram-positive and Gram-negative bacteria. This nondestructive, label-free analytical method at single-cell resolution paves the way for future studies geared towards analyzing virus-host systems of prokaryotes to further understand the complex chemistry and function of virocells.


Assuntos
Bacteriófagos , Células Procarióticas , Antibacterianos , Ecossistema , Bactérias Gram-Negativas , Archaea , Bacillus subtilis
6.
Nat Commun ; 13(1): 284, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-35022403

RESUMO

Earth's mantle releases 38.7 ± 2.9 Tg/yr CO2 along with other reduced and oxidized gases to the atmosphere shaping microbial metabolism at volcanic sites across the globe, yet little is known about its impact on microbial life under non-thermal conditions. Here, we perform comparative metagenomics coupled to geochemical measurements of deep subsurface fluids from a cold-water geyser driven by mantle degassing. Key organisms belonging to uncultivated Candidatus Altiarchaeum show a global biogeographic pattern and site-specific adaptations shaped by gene loss and inter-kingdom horizontal gene transfer. Comparison of the geyser community to 16 other publicly available deep subsurface sites demonstrate a conservation of chemolithoautotrophic metabolism across sites. In silico replication measures suggest a linear relationship of bacterial replication with ecosystems depth with the exception of impacted sites, which show near surface characteristics. Our results suggest that subsurface ecosystems affected by geological degassing are hotspots for microbial life in the deep biosphere.


Assuntos
Ecossistema , Variação Genética , Geologia , Metagenômica , Archaea/genética , Bactérias/genética , Filogenia , Células Procarióticas , Microbiologia do Solo , Microbiologia da Água
7.
Viruses ; 13(11)2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34834933

RESUMO

Viruses are the most abundant biological entities on Earth with an estimate of 1031 viral particles across all ecosystems. Prokaryotic viruses-bacteriophages and archaeal viruses-influence global biogeochemical cycles by shaping microbial communities through predation, through the effect of horizontal gene transfer on the host genome evolution, and through manipulating the host cellular metabolism. Imaging techniques have played an important role in understanding the biology and lifestyle of prokaryotic viruses. Specifically, structure-resolving microscopy methods, for example, transmission electron microscopy, are commonly used for understanding viral morphology, ultrastructure, and host interaction. These methods have been applied mostly to cultivated phage-host pairs. However, recent advances in environmental genomics have demonstrated that the majority of viruses remain uncultivated, and thus microscopically uncharacterized. Although light- and structure-resolving microscopy of viruses from environmental samples is possible, quite often the link between the visualization and the genomic information of uncultivated prokaryotic viruses is missing. In this minireview, we summarize the current state of the art of imaging techniques available for characterizing viruses in environmental samples and discuss potential links between viral imaging and environmental genomics for shedding light on the morphology of uncultivated viruses and their lifestyles in Earth's ecosystems.


Assuntos
Microscopia Eletrônica/métodos , Microscopia/métodos , Vírus/genética , Genoma Viral , Metagenômica , Viroma , Vírus/classificação , Vírus/isolamento & purificação , Vírus/ultraestrutura
8.
Nat Commun ; 12(1): 4642, 2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34330907

RESUMO

The continental subsurface houses a major portion of life's abundance and diversity, yet little is known about viruses infecting microbes that reside there. Here, we use a combination of metagenomics and virus-targeted direct-geneFISH (virusFISH) to show that highly abundant carbon-fixing organisms of the uncultivated genus Candidatus Altiarchaeum are frequent targets of previously unrecognized viruses in the deep subsurface. Analysis of CRISPR spacer matches display resistances of Ca. Altiarchaea against eight predicted viral clades, which show genomic relatedness across continents but little similarity to previously identified viruses. Based on metagenomic information, we tag and image a putatively viral genome rich in protospacers using fluorescence microscopy. VirusFISH reveals a lytic lifestyle of the respective virus and challenges previous predictions that lysogeny prevails as the dominant viral lifestyle in the subsurface. CRISPR development over time and imaging of 18 samples from one subsurface ecosystem suggest a sophisticated interplay of viral diversification and adapting CRISPR-mediated resistances of Ca. Altiarchaeum. We conclude that infections of primary producers with lytic viruses followed by cell lysis potentially jump-start heterotrophic carbon cycling in these subsurface ecosystems.


Assuntos
Archaea/genética , Vírus de Archaea/genética , Genoma Viral/genética , Metagenoma/genética , Metagenômica/métodos , Archaea/classificação , Archaea/virologia , Vírus de Archaea/metabolismo , Vírus de Archaea/fisiologia , Biofilmes/crescimento & desenvolvimento , Ecossistema , Genômica/métodos , Interações Hospedeiro-Patógeno/genética , Lisogenia/genética , Microscopia de Fluorescência , Filogenia , RNA Ribossômico 16S/genética , Especificidade da Espécie , Ativação Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...