Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Prostaglandins Other Lipid Mediat ; 158: 106605, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34923151

RESUMO

Bone modeling can be modulated by lipid signals such as arachidonic acid (AA) and its cyclooxygenase 2 (COX2) metabolite, prostaglandin E2 (PGE2), which are recognized mediators of optimal bone formation. Hydrolysis of AA from membrane glycerophospholipids is catalyzed by phospholipases A2 (PLA2s). We reported that mice deficient in the Ca2+- independent PLA2beta (iPLA2ß), encoded by Pla2g6, exhibit a low bone phenotype, but the cause for this remains to be identified. Here, we examined the mechanistic and molecular roles of iPLA2ß in bone formation using bone marrow stromal cells and calvarial osteoblasts from WT and iPLA2ß-deficient mice, and the MC3T3-E1 osteoblast precursor cell line. Our data reveal that transcription of osteogenic factors (Bmp2, Alpl, and Runx2) and osteogenesis are decreased with iPLA2ß-deficiency. These outcomes are corroborated and recapitulated in WT cells treated with a selective inhibitor of iPLA2 ß (10 µM S-BEL), and rescued in iPLA2ß-deficient cells by additions of 10 µM PGE2. Further, under osteogenic conditions we find that PGE2 production is through iPLA2ß activity and that this leads to induction of Runx2 and iPLA2ß transcription. These findings reveal a strong link between osteogenesis and iPLA2ß-derived lipids and raise the intriguing possibility that iPLA2ß-derived PGE2 participates in osteogenesis and in the regulation of Runx2 and also iPLA2ß.


Assuntos
Células Secretoras de Insulina , Osteogênese , Animais , Osso e Ossos , Dinoprostona/farmacologia , Fosfolipases A2 do Grupo VI/genética , Camundongos , Fosfolipases A2
2.
JCI Insight ; 5(16)2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32814707

RESUMO

Type 1 diabetes (T1D) is a consequence of autoimmune ß cell destruction, but the role of lipids in this process is unknown. We previously reported that activation of Ca2+-independent phospholipase A2ß (iPLA2ß) modulates polarization of macrophages (MΦ). Hydrolysis of the sn-2 substituent of glycerophospholipids by iPLA2ß can lead to the generation of oxidized lipids (eicosanoids), pro- and antiinflammatory, which can initiate and amplify immune responses triggering ß cell death. As MΦ are early triggers of immune responses in islets, we examined the impact of iPLA2ß-derived lipids (iDLs) in spontaneous-T1D prone nonobese diabetic mice (NOD), in the context of MΦ production and plasma abundances of eicosanoids and sphingolipids. We find that (a) MΦNOD exhibit a proinflammatory lipid landscape during the prediabetic phase; (b) early inhibition or genetic reduction of iPLA2ß reduces production of select proinflammatory lipids, promotes antiinflammatory MΦ phenotype, and reduces T1D incidence; (c) such lipid changes are reflected in NOD plasma during the prediabetic phase and at T1D onset; and (d) importantly, similar lipid signatures are evidenced in plasma of human subjects at high risk for developing T1D. These findings suggest that iDLs contribute to T1D onset and identify select lipids that could be targeted for therapeutics and, in conjunction with autoantibodies, serve as early biomarkers of pre-T1D.


Assuntos
Biomarcadores/metabolismo , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/etiologia , Metabolismo dos Lipídeos , Macrófagos Peritoneais/metabolismo , Adolescente , Animais , Criança , Diabetes Mellitus Tipo 1/terapia , Eicosanoides/metabolismo , Ácidos Graxos/metabolismo , Feminino , Fosfolipases A2 do Grupo IV/antagonistas & inibidores , Fosfolipases A2 do Grupo IV/metabolismo , Humanos , Cetonas/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipídeos/sangue , Macrófagos Peritoneais/patologia , Macrófagos Peritoneais/transplante , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Naftalenos/farmacologia
3.
J Lipid Res ; 61(2): 143-158, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31818877

RESUMO

Phospholipases A2 (PLA2s) catalyze hydrolysis of the sn-2 substituent from glycerophospholipids to yield a free fatty acid (i.e., arachidonic acid), which can be metabolized to pro- or anti-inflammatory eicosanoids. Macrophages modulate inflammatory responses and are affected by Ca2+-independent phospholipase A2 (PLA2)ß (iPLA2ß). Here, we assessed the link between iPLA2ß-derived lipids (iDLs) and macrophage polarization. Macrophages from WT and KO (iPLA2ß-/-) mice were classically M1 pro-inflammatory phenotype activated or alternatively M2 anti-inflammatory phenotype activated, and eicosanoid production was determined by ultra-performance LC ESI-MS/MS. As a genotypic control, we performed similar analyses on macrophages from RIP.iPLA2ß.Tg mice with selective iPLA2ß overexpression in ß-cells. Compared with WT, generation of select pro-inflammatory prostaglandins (PGs) was lower in iPLA2ß-/- , and that of a specialized pro-resolving lipid mediator (SPM), resolvin D2, was higher; both changes are consistent with the M2 phenotype. Conversely, macrophages from RIP.iPLA2ß.Tg mice exhibited an opposite landscape, one associated with the M1 phenotype: namely, increased production of pro-inflammatory eicosanoids (6-keto PGF1α, PGE2, leukotriene B4) and decreased ability to generate resolvin D2. These changes were not linked with secretory PLA2 or cytosolic PLA2α or with leakage of the transgene. Thus, we report previously unidentified links between select iPLA2ß-derived eicosanoids, an SPM, and macrophage polarization. Importantly, our findings reveal for the first time that ß-cell iPLA2ß-derived signaling can predispose macrophage responses. These findings suggest that iDLs play critical roles in macrophage polarization, and we posit that they could be targeted therapeutically to counter inflammation-based disorders.


Assuntos
Cálcio/metabolismo , Eicosanoides/metabolismo , Fosfolipases A2 do Grupo IV/metabolismo , Macrófagos/metabolismo , Transdução de Sinais , Animais , Fosfolipases A2 do Grupo IV/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...