Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Internet Res ; 25: e39995, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37856180

RESUMO

BACKGROUND: Increasing efforts toward the prevention of stress-related mental disorders have created a need for unobtrusive real-life monitoring of stress-related symptoms. Wearable devices have emerged as a possible solution to aid in this process, but their use in real-life stress detection has not been systematically investigated. OBJECTIVE: We aimed to determine the utility of ecological momentary assessments (EMA) and physiological arousal measured through wearable devices in detecting ecologically relevant stress states. METHODS: Using EMA combined with wearable biosensors for ecological physiological assessments (EPA), we investigated the impact of an ecological stressor (ie, a high-stakes examination week) on physiological arousal and affect compared to a control week without examinations in first-year medical and biomedical science students (51/83, 61.4% female). We first used generalized linear mixed-effects models with maximal fitting approaches to investigate the impact of examination periods on subjective stress exposure, mood, and physiological arousal. We then used machine learning models to investigate whether we could use EMA, wearable biosensors, or the combination of both to classify momentary data (ie, beeps) as belonging to examination or control weeks. We tested both individualized models using a leave-one-beep-out approach and group-based models using a leave-one-subject-out approach. RESULTS: During stressful high-stakes examination (versus control) weeks, participants reported increased negative affect and decreased positive affect. Intriguingly, physiological arousal decreased on average during the examination week. Time-resolved analyses revealed peaks in physiological arousal associated with both momentary self-reported stress exposure and self-reported positive affect. Mediation models revealed that the decreased physiological arousal in the examination week was mediated by lower positive affect during the same period. We then used machine learning to show that while individualized EMA outperformed EPA in its ability to classify beeps as originating from examinations or from control weeks (1603/4793, 33.45% and 1648/4565, 36.11% error rates, respectively), a combination of EMA and EPA yields optimal classification (1363/4565, 29.87% error rate). Finally, when comparing individualized models to group-based models, we found that the individualized models significantly outperformed the group-based models across all 3 inputs (EMA, EPA, and the combination). CONCLUSIONS: This study underscores the potential of wearable biosensors for stress-related mental health monitoring. However, it emphasizes the necessity of psychological context in interpreting physiological arousal captured by these devices, as arousal can be related to both positive and negative contexts. Moreover, our findings support a personalized approach in which momentary stress is optimally detected when referenced against an individual's own data.


Assuntos
Técnicas Biossensoriais , Dispositivos Eletrônicos Vestíveis , Humanos , Feminino , Masculino , Afeto , Autorrelato , Estresse Psicológico/diagnóstico , Avaliação Momentânea Ecológica
2.
Front Neurol ; 10: 877, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31456741

RESUMO

Objective: This pilot study aims to identify white matter (WM) tract abnormalities in Autism Spectrum Disorders (ASD) toddlers and pre-schoolers by Diffusion Tensor Imaging (DTI), and to correlate imaging findings with clinical improvement after early interventional and Applied Behavior Analysis (ABA) therapies by Verbal Behavior Milestones Assessment and Placement Program (VB-MAPP). Methods: DTI scans were performed on 17 ASD toddlers/pre-schoolers and seven age-matched controls. Nine ASD patients had follow-up MRI 12 months following early intervention and ABA therapy. VB-MAPP was assessed and compared at diagnosis, 6 and 12 months after therapies. Tract-Based Spatial Statistics (TBSS) was used to measure fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial (RD) diffusivity. Results: VB-MAPP scores improved at 6 and 12 months after early intervention and ABA therapy compared to scores at baseline. TBSS analysis showed significant FA decrease and/or RD increase in ASD patients before therapy vs. controls in inferior fronto-occipital fasciculi, uncinate fasciculi, left superior fronto-occipital fasciculus, forceps minor, left superior fronto-occipital fasciculus, right superior longitudinal fasciculus, corona radiate bilaterally, and left external capsule. A significantly FA increase in 21 tracts and ROIs is reported in post- vs. pre-therapy DTI analysis. Conclusion: DTI findings highlighted ASD patient WM abnormalities at diagnosis and confirmed the benefits of 12 months of early intervention and ABA therapy on clinical and neuro imaging outcomes.

3.
Neuroinformatics ; 17(3): 443-450, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30552549

RESUMO

The anatomical structure of the thalamus renders its segmentation on 3DT1 images harder due to its low tissue contrast, and not well-defined boundaries. We aimed to investigate the differences in the precision of publicly available segmentation techniques on 3DT1 images acquired at 1.5 T and 3 T machines compared to the thalamic manual segmentation in a pediatric population. Sixty-eight subjects were recruited between the ages of one and 18 years. Manual segmentation of the thalamus was done by three junior raters, and then corrected by an experienced rater. Automated segmentation was then performed with FSL Anat, FIRST, FreeSurfer, MRICloud, and volBrain. A mask of the intersections between the manual and automated segmentation was created for each algorithm to measure the degree of similitude (DICE) with the manual segmentation. The DICE score was shown to be highest using volBrain in all subjects (0.873 ± 0.036), as well as in the 1.5 T (0.871 ± 0.037), and the 3 T (0.875 ± 0.036) groups. FSL-Anat and FIRST came in second and third. MRICloud was shown to have the lowest DICE values. When comparing 1.5 T to 3 T groups, no significant differences were observed in all segmentation methods, except for FIRST (p = 0.038). Age was not a significant predictor of DICE in any of the measurements. When using automated segmentation, the best option in both field strengths would be the use of volBrain. This will achieve results closest to the manual segmentation while reducing the amount of time and computing power needed by researchers.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Neuroimagem/métodos , Tálamo/anatomia & histologia , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Imageamento por Ressonância Magnética/métodos , Masculino
4.
Eur J Radiol ; 109: 27-32, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30527308

RESUMO

BACKGROUND: Diagnoses of thalamic atrophy in children are based on experts' judgments. No normative measures exist for aiding objective diagnoses. Our aim was to determine normative two-dimensions(2D) and volume measurements of the thalamus in normally developing children. METHODS: MRI images of 245 patients were retrospectively collected. Only participants with normal brain MRIs were included in this cross-sectional study. Anterior-posterior (AP), transverse (T), and craniocaudal (C) diameters were measured. Volumetric masks of the thalamus were manually drawn, whereas volumetric measurements of the brain were automated. RESULTS: 124 patients were male (50.6%). We tabulated our measurements from birth until 18 years old. No significant differences in the thalamus measurements are found between the two hemispheres nor between sexes. The most remarkable increase in the thalamus volume and AP dimension is noted in the first four years of life, following which the values seem to stabilize. Craniocaudal diameters seem to increase in the first year of life, whereas transverse diameters increase until the age of 14 before plateauing. CONCLUSION: We report normative values of the thalamus in 2D and 3D from birth until 18 years of age. A rapid increase in the thalamic size is noted during the first four years of life followed by stabilization.


Assuntos
Imageamento por Ressonância Magnética/métodos , Tálamo/anatomia & histologia , Adolescente , Fatores Etários , Criança , Pré-Escolar , Estudos Transversais , Feminino , Humanos , Lactente , Masculino , Valores de Referência , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...