Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 16(8)2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38672578

RESUMO

During the last decade, tyrosine kinase inhibitors (TKIs) sorafenib and regorafenib have been standard systemic treatments for advanced hepatocellular carcinoma (HCC). Previous data associated sorafenib with inflammasome activation. However, the role of the inflammasome in sorafenib and regorafenib signaling has not been described in liver cancer patients. For this purpose, we analyzed inflammasome-related transcriptomic changes in a murine HCC model. Our data confirmed inflammasome activation after both TKI treatments, sharing a similar pattern of increased gene expression. According to human database results, transcriptional increase of inflammasome genes is associated with poorer prognosis for male liver cancer patients, suggesting a sex-dependent role for inflammasome activation in HCC therapy. In biopsies of HCC and its surrounding tissue, we detected durable increases in the inflammasome activation pattern after sorafenib or regorafenib treatment in male patients. Further supporting its involvement in sorafenib action, inflammasome inhibition (MCC950) enhanced sorafenib anticancer activity in experimental HCC models, while no direct in vitro effect was observed in HCC cell lines. Moreover, activated human THP-1 macrophages released IL-1ß after sorafenib administration, while 3D Hep3B spheres displayed increased tumor growth after IL-1ß addition, pointing to the liver microenvironment as a key player in inflammasome action. In summary, our results unveil the inflammasome pathway as an actionable target in sorafenib or regorafenib therapy and associate an inflammasome signature in HCC and surrounding tissue with TKI administration. Therefore, targeting inflammasome activation, principally in male patients, could help to overcome sorafenib or regorafenib resistance and enhance the efficacy of TKI treatments in HCC.

2.
Semin Liver Dis ; 44(1): 99-114, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38395061

RESUMO

TAM (TYRO3, AXL, and MERTK) protein tyrosine kinase membrane receptors and their vitamin K-dependent ligands GAS6 and protein S (PROS) are well-known players in tumor biology and autoimmune diseases. In contrast, TAM regulation of fibrogenesis and the inflammation mechanisms underlying metabolic dysfunction-associated steatohepatitis (MASH), cirrhosis, and, ultimately, liver cancer has recently been revealed. GAS6 and PROS binding to phosphatidylserine exposed in outer membranes of apoptotic cells links TAMs, particularly MERTK, with hepatocellular damage. In addition, AXL and MERTK regulate the development of liver fibrosis and inflammation in chronic liver diseases. Acute hepatic injury is also mediated by the TAM system, as recent data regarding acetaminophen toxicity and acute-on-chronic liver failure have uncovered. Soluble TAM-related proteins, mainly released from activated macrophages and hepatic stellate cells after hepatic deterioration, are proposed as early serum markers for disease progression. In conclusion, the TAM system is becoming an interesting pharmacological target in liver pathology and a focus of future biomedical research in this field.


Assuntos
Receptor Tirosina Quinase Axl , Humanos , c-Mer Tirosina Quinase/metabolismo , Inflamação , Cirrose Hepática/tratamento farmacológico , Receptores Proteína Tirosina Quinases/metabolismo
3.
Biol Sex Differ ; 14(1): 85, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37964320

RESUMO

BACKGROUND: Metabolic dysfunction-associated steatotic liver disease (MASLD) is prevalent in Western countries, evolving into metabolic dysfunction-associated steatohepatitis (MASH) with a sexual dimorphism. Fertile women exhibit lower MASLD risk than men, which diminishes post-menopause. While NKT-cell involvement in steatohepatitis is debated, discrepancies may stem from varied mouse strains used, predominantly C57BL6/J with Th1-dominant responses. Exploration of steatohepatitis, encompassing both genders, using Balb/c background, with Th2-dominant immune response, and CD1d-deficient mice in the Balb/c background (lacking Type I and Type II NKT cells) can clarify gender disparities and NKT-cell influence on MASH progression. METHODS: A high fat and choline-deficient (HFCD) diet was used in male and female mice, Balb/c mice or CD1d-/- mice in the Balb/c background that exhibit a Th2-dominant immune response. Liver fibrosis and inflammatory gene expression were measured by qPCR, and histology assessment. NKT cells, T cells, macrophages and neutrophils were assessed by flow cytometry. RESULTS: Female mice displayed milder steatohepatitis after 6 weeks of HFCD, showing reduced liver damage, inflammation, and fibrosis compared to males. Male Balb/c mice exhibited NKT-cell protection against steatohepatitis whereas CD1d-/- males on HFCD presented decreased hepatoprotection, increased liver fibrosis, inflammation, neutrophilic infiltration, and inflammatory macrophages. In contrast, the NKT-cell role was negligible in early steatohepatitis development in both female mice, as fibrosis and inflammation were similar despite augmented liver damage in CD1d-/- females. Relevant, hepatic type I NKT levels in female Balb/c mice were significantly lower than in male. CONCLUSIONS: NKT cells exert a protective role against experimental steatohepatitis as HFCD-treated CD1d-/- males had more severe fibrosis and inflammation than male Balb/c mice. In females, the HFCD-induced hepatocellular damage and the immune response are less affected by NKT cells on early steatohepatitis progression, underscoring sex-specific NKT-cell influence in MASH development.


Metabolic dysfunction-associated steatotic liver disease (MASLD) is a common liver condition today. In its more advanced form, called metabolic dysfunction-associated steatohepatitis (MASH), adult men are more often affected than women, though this difference vanishes after menopause. Various factors contribute to MASH, including a specific immune cell type called NKT cells, which has not been deeply researched yet. To explore the role of NKT cells in steatohepatitis, we used male and female mice with or without NKT cells (CD1d−/− mice), feeding them a high-fat diet that induces steatohepatitis. Our findings revealed that female mice had less severe steatohepatitis compared to males. Interestingly, we observed a protective role of NKT cells during steatohepatitis, as male mice without these cells had more damage, inflammation, and fibrosis than those with NKT cells. However, in females, even though those lacking NKT cells showed more liver damage and immune alterations, NKT did not seem to play a major role in early steatohepatitis progression. Notably, females had much fewer NKT cells in their livers compared to males, possibly explaining this difference. In conclusion, NKT cells seem to slow down steatohepatitis progression, especially in male mice. In females, their impact on early steatohepatitis advance appears more limited.


Assuntos
Fígado Gorduroso , Células T Matadoras Naturais , Feminino , Masculino , Animais , Humanos , Camundongos , Células T Matadoras Naturais/patologia , Células T Matadoras Naturais/fisiologia , Camundongos Endogâmicos BALB C , Caracteres Sexuais , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Cirrose Hepática/patologia , Fibrose , Inflamação , Dieta Hiperlipídica/efeitos adversos , Colina
4.
Cancers (Basel) ; 14(3)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35158892

RESUMO

Hepatocellular carcinoma (HCC), the most common form of liver cancer, continues to be a serious medical problem with poor prognosis, without major therapeutic improvement for years and increasing incidence. Fortunately, advances in systemic treatment options are finally arriving for HCC patients. After a decade of sorafenib as a standard therapy for advanced HCC, several tyrosine kinase inhibitors (TKIs), antiangiogenic antibodies, and immune checkpoint inhibitors have reached the clinic. Although infections by hepatitis B virus and hepatitis C virus remain principal factors for HCC development, the rise of non- alcoholic steatohepatitis from diabetes mellitus or metabolic syndrome is impeding HCC decline. Knowledge of specific molecular mechanisms, based on the etiology and the HCC microenvironment that influence tumor growth and immune control, will be crucial for physician decision-making among a variety of drugs to prescribe. In addition, markers of treatment efficacy are needed to speed the movement of patients towards other potentially effective treatments. Consequently, research to provide scientific data for the evidence-based management of liver cancer is guaranteed in the coming years and discussed here.

5.
Antioxidants (Basel) ; 10(9)2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34572967

RESUMO

Sorafenib and regorafenib, multikinase inhibitors (MKIs) used as standard chemotherapeutic agents for hepatocellular carcinoma (HCC), generate reactive oxygen species (ROS) during cancer treatment. Antioxidant supplements are becoming popular additions to our diet, particularly glutathione derivatives and mitochondrial-directed compounds. To address their possible interference during HCC chemotherapy, we analyzed the effect of common antioxidants using hepatoma cell lines and tumor spheroids. In liver cancer cell lines, sorafenib and regorafenib induced mitochondrial ROS production and potent cell death after glutathione depletion. In contrast, cabozantinib only exhibited oxidative cell death in specific HCC cell lines. After sorafenib and regorafenib administration, antioxidants such as glutathione methyl ester and the superoxide scavenger MnTBAP decreased cell death and ROS production, precluding the MKI activity against hepatoma cells. Interestingly, sorafenib-induced mitochondrial damage caused PINK/Parkin-dependent mitophagy stimulation, altered by increased ROS production. Finally, in sorafenib-treated tumor spheroids, while ROS induction reduced tumor growth, antioxidant treatments favored tumor development. In conclusion, the anti-tumor activity of specific MKIs, such as regorafenib and sorafenib, is altered by the cellular redox status, suggesting that uncontrolled antioxidant intake during HCC treatment should be avoided or only endorsed to diminish chemotherapy-induced side effects, always under medical scrutiny.

6.
Biomedicines ; 9(4)2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33810394

RESUMO

BACKGROUND: Growth arrest-specific factor 6 (GAS6) and the Tyro3, AXL, and MERTK (TAM) receptors counterbalance pro-inflammatory responses. AXL is a candidate receptor for SARS-CoV-2, particularly in the respiratory system, and the GAS6/AXL axis is targeted in current clinical trials against COVID-19. However, GAS6 and TAMs have not been evaluated in COVID-19 patients at emergency admission. METHODS: Plasma GAS6, AXL, and MERTK were analyzed in 132 patients consecutively admitted to the emergency ward during the first peak of COVID-19. RESULTS: GAS6 levels were higher in the SARS-CoV-2-positive patients, increasing progressively with the severity of the disease. Patients with initial GAS6 at the highest quartile had the worst outcome, with a 3-month survival of 65%, compared to a 90% survival for the rest. Soluble AXL exhibited higher plasma concentration in deceased patients, without significant differences in MERTK among SARS-CoV-2-positive groups. GAS6 mRNA was mainly expressed in alveolar cells and AXL in airway macrophages. Remarkably, THP-1 human macrophage differentiation neatly induces AXL, and its inhibition (bemcentinib) reduced cytokine production in human macrophages after LPS challenge. CONCLUSIONS: Plasma GAS6 and AXL levels reflect COVID-19 severity and could be early markers of disease prognosis, supporting a relevant role of the GAS6/AXL system in the immune response in COVID-19.

7.
Cells ; 9(10)2020 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-32998369

RESUMO

The vitamin K-dependent factors protein S (PROS1) and growth-arrest-specific gene 6 (GAS6) and their tyrosine kinase receptors TYRO3, AXL, and MERTK, the TAM subfamily of receptor tyrosine kinases (RTK), are key regulators of inflammation and vascular response to damage. TAM signaling, which has largely studied in the immune system and in cancer, has been involved in coagulation-related pathologies. Because of these established biological functions, the GAS6-PROS1/TAM system is postulated to play an important role in SARS-CoV-2 infection and progression complications. The participation of the TAM system in vascular function and pathology has been previously reported. However, in the context of COVID-19, the role of TAMs could provide new clues in virus-host interplay with important consequences in the way that we understand this pathology. From the viral mimicry used by SARS-CoV-2 to infect cells, to the immunothrombosis that is associated with respiratory failure in COVID-19 patients, TAM signaling seems to be involved at different stages of the disease. TAM targeting is becoming an interesting biomedical strategy, which is useful for COVID-19 treatment now, but also for other viral and inflammatory diseases in the future.


Assuntos
Infecções por Coronavirus/complicações , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Pneumonia Viral/complicações , Proteína S/metabolismo , Trombose/etiologia , Imunidade Adaptativa , Animais , COVID-19 , Infecções por Coronavirus/sangue , Infecções por Coronavirus/imunologia , Hemostasia , Humanos , Pandemias , Pneumonia Viral/sangue , Pneumonia Viral/imunologia , Trombose/sangue , Trombose/imunologia , c-Mer Tirosina Quinase/metabolismo
8.
Antioxidants (Basel) ; 9(10)2020 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-32987701

RESUMO

Mitochondria are the main source of reactive oxygen species (ROS), most of them deriving from the mitochondrial respiratory chain. Among the numerous enzymatic and non-enzymatic antioxidant systems present in mitochondria, mitochondrial glutathione (mGSH) emerges as the main line of defense for maintaining the appropriate mitochondrial redox environment. mGSH's ability to act directly or as a co-factor in reactions catalyzed by other mitochondrial enzymes makes its presence essential to avoid or to repair oxidative modifications that can lead to mitochondrial dysfunction and subsequently to cell death. Since mitochondrial redox disorders play a central part in many diseases, harboring optimal levels of mGSH is vitally important. In this review, we will highlight the participation of mGSH as a contributor to disease progression in pathologies as diverse as Alzheimer's disease, alcoholic and non-alcoholic steatohepatitis, or diabetic nephropathy. Furthermore, the involvement of mitochondrial ROS in the signaling of new prescribed drugs and in other pathologies (or in other unmet medical needs, such as gender differences or coronavirus disease of 2019 (COVID-19) treatment) is still being revealed; guaranteeing that research on mGSH will be an interesting topic for years to come.

9.
Cancers (Basel) ; 12(2)2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32024199

RESUMO

BACKGROUND: The multikinase inhibitor regorafenib, approved as second-line treatment for hepatocellular carcinoma (HCC) after sorafenib failure, may induce mitochondrial damage. BH3-mimetics, inhibitors of specific BCL-2 proteins, are valuable drugs in cancer therapy to amplify mitochondrial-dependent cell death. METHODS: In in vitro and in vivo HCC models, we tested regorafenib's effect on the BCL-2 network and the efficacy of BH3-mimetics on HCC treatment. RESULTS: In hepatoma cell lines and Hep3B liver spheroids, regorafenib cytotoxicity was potentiated by BCL-xL siRNA transfection or pharmacological inhibition (A-1331852), while BCL-2 antagonism had no effect. Mitochondrial outer membrane permeabilization, cytochrome c release, and caspase-3 activation mediated A-1331852/regorafenib-induced cell death. In a patient-derived xenograft (PDX) HCC model, BCL-xL inhibition stimulated regorafenib activity, drastically decreasing tumor growth. Moreover, regorafenib-resistant HepG2 cells displayed increased BCL-xL and reduced MCL-1 expression, while A-1331852 reinstated regorafenib efficacy in vitro and in a xenograft mouse model. Interestingly, BCL-xL levels, associated with poor prognosis in liver and colorectal cancer, and the BCL-xL/MCL-1 ratio were detected as being increased in HCC patients. CONCLUSION: Regorafenib primes tumor cells to BH3-mimetic-induced cell death, allowing BCL-xL inhibition with A-1331852 or other strategies based on BCL-xL degradation to enhance regorafenib efficacy, offering a novel approach for HCC treatment, particularly for tumors with an elevated BCL-xL/MCL-1 ratio.

10.
Cell Mol Gastroenterol Hepatol ; 9(3): 349-368, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31689560

RESUMO

BACKGROUND AND AIMS: GAS6 signaling, through the TAM receptor tyrosine kinases AXL and MERTK, participates in chronic liver pathologies. Here, we addressed GAS6/TAM involvement in Non-Alcoholic SteatoHepatitis (NASH) development. METHODS: GAS6/TAM signaling was analyzed in cultured primary hepatocytes, hepatic stellate cells (HSC) and Kupffer cells (KCs). Axl-/-, Mertk-/- and wild-type C57BL/6 mice were fed with Chow, High Fat Choline-Deficient Methionine-Restricted (HFD) or methionine-choline-deficient (MCD) diet. HSC activation, liver inflammation and cytokine/chemokine production were measured by qPCR, mRNA Array analysis, western blotting and ELISA. GAS6, soluble AXL (sAXL) and MERTK (sMERTK) levels were analyzed in control individuals, steatotic and NASH patients. RESULTS: In primary mouse cultures, GAS6 or MERTK activation protected primary hepatocytes against lipid toxicity via AKT/STAT-3 signaling, while bemcentinib (small molecule AXL inhibitor BGB324) blocked AXL-induced fibrogenesis in primary HSCs and cytokine production in LPS-treated KCs. Accordingly; bemcentinib diminished liver inflammation and fibrosis in MCD- and HFD-fed mice. Upregulation of AXL and ADAM10/ADAM17 metalloproteinases increased sAXL in HFD-fed mice. Transcriptome profiling revealed major reduction in fibrotic- and inflammatory-related genes in HFD-fed mice after bemcentinib administration. HFD-fed Mertk-/- mice exhibited enhanced NASH, while Axl-/- mice were partially protected. In human serum, sAXL levels augmented even at initial stages, whereas GAS6 and sMERTK increased only in cirrhotic NASH patients. In agreement, sAXL increased in HFD-fed mice before fibrosis establishment, while bemcentinib prevented liver fibrosis/inflammation in early NASH. CONCLUSION: AXL signaling, increased in NASH patients, promotes fibrosis in HSCs and inflammation in KCs, while GAS6 protects cultured hepatocytes against lipotoxicity via MERTK. Bemcentinib, by blocking AXL signaling and increasing GAS6 levels, reduces experimental NASH, revealing AXL as an effective therapeutic target for clinical practice.


Assuntos
Benzocicloeptenos/farmacologia , Cirrose Hepática/prevenção & controle , Fígado/patologia , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Triazóis/farmacologia , Adulto , Idoso , Animais , Benzocicloeptenos/uso terapêutico , Biomarcadores/sangue , Biomarcadores/metabolismo , Biópsia , Células Cultivadas , Modelos Animais de Doenças , Progressão da Doença , Feminino , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/patologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/patologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Células de Kupffer/efeitos dos fármacos , Células de Kupffer/imunologia , Fígado/citologia , Fígado/efeitos dos fármacos , Cirrose Hepática/imunologia , Cirrose Hepática/patologia , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/imunologia , Hepatopatia Gordurosa não Alcoólica/patologia , Cultura Primária de Células , Proteínas Proto-Oncogênicas/sangue , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Proteína Tirosina Quinases/sangue , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Triazóis/uso terapêutico , c-Mer Tirosina Quinase/genética , c-Mer Tirosina Quinase/metabolismo , Receptor Tirosina Quinase Axl
11.
Oncotarget ; 9(24): 16701-16717, 2018 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-29682179

RESUMO

Sorafenib, systemic treatment for advanced hepatocellular carcinoma (HCC), and regorafenib, novel second line treatment after sorafenib failure, have efficacy limited by evasive mechanisms of acquired-drug resistance. BCL-2 proteins participate in the response to tyrosine kinase inhibitors; however, their role in HCC therapy with sorafenib/regorafenib remains uncertain. BH3-mimetic ABT-263 (navitoclax) enhanced sorafenib activity, inducing cell death via a mitochondrial caspase-dependent mechanism, after BCL-xL/BCL-2 inhibition. Sorafenib-resistant hepatoma cells (HepG2R and Hep3BR) exhibited altered mRNA expression of BCL-2 and other anti-apoptotic family members, such as MCL-1, priming drug-resistant cancer cells to death by BH3-mimetics. ABT-263 restored sorafenib efficacy in sorafenib-resistant cell lines and HCC mouse models. Moreover, in mice xenografts from patient-derived BCLC9 cells, better tumor response to sorafenib was associated to higher changes in the BCL-2 mRNA pattern. HCC non-treated patients displayed altered BCL-2, MCL-1 and BCL-xL mRNA levels respect to adjacent non-tumoral biopsies and an increased BCL-2/MCL-1 ratio, predictive of navitoclax efficacy. Moreover, regorafenib administration also modified the BCL-2/MCL-1 ratio and navitoclax sensitized hepatoma cells to regorafenib by a mitochondrial caspase-dependent mechanism. In conclusion, sorafenib/regorafenib response is determined by BCL-2 proteins, while increased BCL-2/MCL-1 ratio in HCC sensitizes drug resistant-tumors against ABT-263 co-administration. Thus, changes in the BCL-2 profile, altered in HCC patients, could help to follow-up sorafenib efficacy, allowing patient selection for combined therapy with BH3-mimetics or early switch them to second line therapy.

12.
Cell Death Dis ; 7(11): e2464, 2016 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-27831566

RESUMO

Sirtuin-1 (SIRT1) regulates hepatic metabolism but its contribution to NF-κB-dependent inflammation has been overlooked. Cysteine cathepsins (Cathepsin B or S, CTSB/S) execute specific functions in physiological processes, such as protein degradation, having SIRT1 as a substrate. We investigated the roles of CTSB/S and SIRT1 in the regulation of hepatic inflammation using primary parenchymal and non-parenchymal hepatic cell types and cell lines. In all cells analyzed, CTSB/S inhibition reduces nuclear p65-NF-κB and κB-dependent gene expression after LPS or TNF through enhanced SIRT1 expression. Accordingly, SIRT1 silencing was sufficient to enhance inflammatory gene expression. Importantly, in a dietary mouse model of non-alcoholic steatohepatitis, or in healthy and fibrotic mice after LPS challenge, cathepsins as well as NF-κB-dependent gene expression are activated. Consistent with the prominent role of cathepsin/SIRT1, cysteine cathepsin inhibition limits NF-κB-dependent hepatic inflammation through the regulation of SIRT1 in all in vivo settings, providing a novel anti-inflammatory therapeutic target in liver disease.


Assuntos
Catepsina B/metabolismo , Catepsinas/metabolismo , Inflamação/metabolismo , Fígado/metabolismo , Fígado/patologia , NF-kappa B/metabolismo , Sirtuína 1/metabolismo , Animais , Células Cultivadas , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Inflamação/genética , Inflamação/patologia , Lipopolissacarídeos/farmacologia , Cirrose Hepática/complicações , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Masculino , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Fenótipo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos
14.
Oncotarget ; 7(7): 8253-67, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26811497

RESUMO

Evasive mechanisms triggered by the tyrosine kinase inhibitor sorafenib reduce its efficacy in hepatocellular carcinoma (HCC) treatment. Drug-resistant cancer cells frequently exhibit sphingolipid dysregulation, reducing chemotherapeutic cytotoxicity via the induction of ceramide-degrading enzymes. However, the role of ceramide in sorafenib therapy and resistance in HCC has not been clearly established. Our data reveals that ceramide-modifying enzymes, particularly glucosylceramide synthase (GCS), are upregulated during sorafenib treatment in hepatoma cells (HepG2 and Hep3B), and more importantly, in sorafenib-resistant cell lines. GCS silencing or pharmacological GCS inhibition sensitized hepatoma cells to sorafenib exposure. GCS inhibition, combined with sorafenib, triggered cytochrome c release and ATP depletion in sorafenib-treated hepatoma cells, leading to mitochondrial cell death after energetic collapse. Conversely, genetic GCS overexpression increased sorafenib resistance. Of interest, GCS inhibition improved sorafenib effectiveness in a xenograft mouse model, recovering drug sensitivity of sorafenib-resistant tumors in mice. In conclusion, our results reveal GCS induction as a mechanism of sorafenib resistance, suggesting that GCS targeting may be a novel strategy to increase sorafenib efficacy in HCC management, and point to target the mitochondria as the subcellular location where sorafenib therapy could be potentiated.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Glucosiltransferases/antagonistas & inibidores , Neoplasias Hepáticas Experimentais/tratamento farmacológico , Niacinamida/análogos & derivados , Compostos de Fenilureia/farmacologia , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Carcinoma Hepatocelular/enzimologia , Carcinoma Hepatocelular/patologia , Proliferação de Células/efeitos dos fármacos , Ceramidas/metabolismo , Ácidos Graxos Monoinsaturados/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glucosiltransferases/genética , Humanos , Técnicas Imunoenzimáticas , Imunossupressores/farmacologia , Neoplasias Hepáticas Experimentais/enzimologia , Neoplasias Hepáticas Experimentais/patologia , Masculino , Camundongos , Camundongos Nus , Niacinamida/farmacologia , Inibidores de Proteínas Quinases/farmacologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Sorafenibe , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
15.
J Hepatol ; 63(3): 670-8, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25908269

RESUMO

BACKGROUND & AIMS: Liver fibrosis, an important health concern associated to chronic liver injury that provides a permissive environment for cancer development, is characterized by accumulation of extracellular matrix components mainly derived from activated hepatic stellate cells (HSCs). Axl, a receptor tyrosine kinase and its ligand Gas6, are involved in cell differentiation, immune response and carcinogenesis. METHODS: HSCs were obtained from WT and Axl(-/-) mice, treated with recombinant Gas6 protein (rGas6), Axl siRNAs or the Axl inhibitor BGB324, and analyzed by western blot and real-time PCR. Experimental fibrosis was studied in CCl4-treated WT and Axl(-/-) mice, and in combination with Axl inhibitor. Gas6 and Axl serum levels were measured in alcoholic liver disease (ALD) and hepatitis C virus (HCV) patients. RESULTS: In primary mouse HSCs, Gas6 and Axl levels paralleled HSC activation. rGas6 phosphorylated Axl and AKT prior to HSC phenotypic changes, while Axl siRNA silencing reduced HSC activation. Moreover, BGB324 blocked Axl/AKT phosphorylation and diminished HSC activation. In addition, Axl(-/-) mice displayed decreased HSC activation in vitro and liver fibrogenesis after chronic damage by CCl4 administration. Similarly, BGB324 reduced collagen deposition and CCl4-induced liver fibrosis in mice. Importantly, Gas6 and Axl serum levels increased in ALD and HCV patients, inversely correlating with liver functionality. CONCLUSIONS: The Gas6/Axl axis is required for full HSC activation. Gas6 and Axl serum levels increase in parallel to chronic liver disease progression. Axl targeting may be a therapeutic strategy for liver fibrosis management.


Assuntos
Células Estreladas do Fígado/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Cirrose Hepática/etiologia , Transdução de Sinais/fisiologia , Adulto , Idoso , Animais , Tetracloreto de Carbono , Proliferação de Células , Células Cultivadas , Doença Crônica , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/sangue , Cirrose Hepática/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , NF-kappa B/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Receptores Proteína Tirosina Quinases/fisiologia , c-Mer Tirosina Quinase
16.
Sci Rep ; 5: 7916, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25604905

RESUMO

Hepatocellular carcinoma (HCC) frequently develops in a pro-inflammatory and pro-fibrogenic environment with hepatic stellate cells (HSCs) remodeling the extracellular matrix composition. Molecules secreted by liver tumors contributing to HSC activation and peritumoral stromal transformation remain to be fully identified. Here we show that conditioned medium from HCC cell lines, Hep3B and HepG2, induced primary mouse HSCs transdifferentiation, characterized by profibrotic properties and collagen modification, with similar results seen in the human HSC cell line LX2. Moreover, tumor growth was enhanced by coinjection of HepG2/LX2 cells in a xenograft murine model, supporting a HCC-HSC crosstalk in liver tumor progression. Protein microarray secretome analyses revealed angiogenin as the most robust and selective protein released by HCC compared to LX2 secreted molecules. In fact, recombinant angiogenin induced in vitro HSC activation requiring its nuclear translocation and rRNA transcriptional stimulation. Moreover, angiogenin antagonism by blocking antibodies or angiogenin inhibitor neomycin decreased in vitro HSC activation by conditioned media or recombinant angiogenin. Finally, neomycin administration reduced tumor growth of HepG2-LX2 cells coinjected in mice. In conclusion, angiogenin secretion by HCCs favors tumor development by inducing HSC activation and ECM remodeling. These findings indicate that targeting angiogenin signaling may be of potential relevance in HCC management.


Assuntos
Carcinoma Hepatocelular/metabolismo , Células Estreladas do Fígado/metabolismo , Neoplasias Hepáticas Experimentais/metabolismo , Proteínas de Neoplasias/metabolismo , Ribonuclease Pancreático/metabolismo , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Células Hep G2 , Células Estreladas do Fígado/patologia , Xenoenxertos , Humanos , Neoplasias Hepáticas Experimentais/tratamento farmacológico , Neoplasias Hepáticas Experimentais/patologia , Camundongos , Transplante de Neoplasias
17.
J Biol Chem ; 288(17): 11705-17, 2013 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-23471965

RESUMO

The transcription factor Neurogenin3 functions as a master regulator of endocrine pancreas formation, and its deficiency leads to the development of diabetes in humans and mice. In the embryonic pancreas, Neurogenin3 is transiently expressed at high levels for a narrow time window to initiate endocrine differentiation in scattered progenitor cells. The mechanisms controlling these rapid and robust changes in Neurogenin3 expression are poorly understood. In this study, we characterize a Neurogenin3 positive autoregulatory loop whereby this factor may rapidly induce its own levels. We show that Neurogenin3 binds to a conserved upstream fragment of its own gene, inducing deposition of active chromatin marks and the activation of Neurog3 transcription. Additionally, we show that the broadly expressed endodermal forkhead factors Foxa1 and Foxa2 can cooperate synergistically to amplify Neurogenin3 autoregulation in vitro. However, only Foxa2 colocalizes with Neurogenin3 in pancreatic progenitors, thus indicating a primary role for this factor in regulating Neurogenin3 expression in vivo. Furthermore, in addition to decreasing Neurog3 autoregulation, inhibition of Foxa2 by RNA interference attenuates Neurogenin3-dependent activation of the endocrine developmental program in cultured duct mPAC cells. Hence, these data uncover the potential functional cooperation between the endocrine lineage-determining factor Neurogenin3 and the widespread endoderm progenitor factor Foxa2 in the implementation of the endocrine developmental program in the pancreas.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Diferenciação Celular/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Fator 3-beta Nuclear de Hepatócito/biossíntese , Ilhotas Pancreáticas/embriologia , Proteínas do Tecido Nervoso/biossíntese , Células-Tronco/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/agonistas , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Linhagem da Célula/fisiologia , Cromatina/genética , Cromatina/metabolismo , Fator 3-alfa Nuclear de Hepatócito/genética , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Fator 3-beta Nuclear de Hepatócito/agonistas , Fator 3-beta Nuclear de Hepatócito/genética , Humanos , Ilhotas Pancreáticas/citologia , Camundongos , Células NIH 3T3 , Proteínas do Tecido Nervoso/agonistas , Proteínas do Tecido Nervoso/genética , Células-Tronco/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...