Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurobiol Aging ; 133: 16-27, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38381472

RESUMO

A significant progressive decline in beta-carotene (ßC) levels in the brain is associated with cognitive impairment and a higher prevalence of Alzheimer's disease (AD). In this study, we investigated whether the administration of 9-cis beta-carotene (9CBC)-rich powder of the alga Dunaliella bardawil, the best-known source of ßC in nature, inhibits the development of AD-like neuropathology and cognitive deficits. We demonstrated that in 3 AD mouse models, Tg2576, 5xFAD, and apoE4, 9CBC treatment improved long- and short-term memory, decreased neuroinflammation, and reduced the prevalence of ß-amyloid plaques and tau hyperphosphorylation. These findings suggest that 9CBC has the potential to be an effective preventive and symptomatic AD therapy.


Assuntos
Doença de Alzheimer , Doenças Neuroinflamatórias , Animais , Camundongos , beta Caroteno/farmacologia , beta Caroteno/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Dieta , Cognição , Modelos Animais de Doenças , Placa Amiloide
2.
J Neuroinflammation ; 17(1): 267, 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32907600

RESUMO

BACKGROUND: Excessive inflammation might activate and injure the blood-brain barrier (BBB), a common feature of many central nervous system (CNS) disorders. We previously developed an in vitro BBB injury model in which the organophosphate paraoxon (PX) affects the BBB endothelium by attenuating junctional protein expression leading to weakened barrier integrity. The objective of this study was to investigate the inflammatory cellular response at the BBB to elucidate critical pathways that might lead to effective treatment in CNS pathologies in which the BBB is compromised. We hypothesized that caspase-1, a core component of the inflammasome complex, might have important role in BBB function since accumulating evidence indicates its involvement in brain inflammation and pathophysiology. METHODS: An in vitro human BBB model was employed to investigate BBB functions related to inflammation, primarily adhesion and transmigration of peripheral blood mononuclear cells (PBMCs). Caspase-1 pathway was studied by measurements of its activation state and its role in PBMCs adhesion, transmigration, and BBB permeability were investigated using the specific caspase-1 inhibitor, VX-765. Expression level of adhesion and junctional molecules and the secretion of pro-inflammatory cytokines were measured in vitro and in vivo at the BBB endothelium after exposure to PX. The potential repair effect of blocking caspase-1 and downstream molecules was evaluated by immunocytochemistry, ELISA, and Nanostring technology. RESULTS: PX affected the BBB in vitro by elevating the expression of the adhesion molecules E-selectin and ICAM-1 leading to increased adhesion of PBMCs to endothelial monolayer, followed by elevated transendothelial-migration which was ICAM-1 and LFA-1 dependent. Blocking caspase-8 and 9 rescued the viability of the endothelial cells but not the elevated transmigration of PBMCs. Inhibition of caspase-1, on the other hand, robustly restored all of barrier insults tested including PBMCs adhesion and transmigration, permeability, and VE-cadherin protein levels. The in vitro inflammatory response induced by PX and the role of caspase-1 in BBB injury were corroborated in vivo in isolated blood vessels from hippocampi of mice exposed to PX and treated with VX-765. CONCLUSIONS: These results shed light on the important role of caspase-1 in BBB insult in general and specifically in the inflamed endothelium, and suggest therapeutic potential for various CNS disorders, by targeting caspase-1 in the injured BBB.


Assuntos
Barreira Hematoencefálica/metabolismo , Caspase 1/metabolismo , Células Endoteliais/metabolismo , Inflamassomos/metabolismo , Pericitos/metabolismo , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/lesões , Morte Celular/fisiologia , Movimento Celular/fisiologia , Técnicas de Cocultura , Dipeptídeos/farmacologia , Humanos , Interleucina-8/metabolismo , Masculino , Camundongos , para-Aminobenzoatos/farmacologia
3.
Aging Cell ; 17(5): e12818, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30079520

RESUMO

Type 2 diabetes (T2D) is associated with increased risk of Alzheimer's disease (AD). There is evidence for impaired blood-brain barrier (BBB) in both diseases, but its role in the interplay between them is not clear. Here, we investigated the effects of high-fat diet (HFD), a model for T2D, on the Tg2576 mouse model of AD, in regard to BBB function. We showed that HFD mice had higher weight, more insulin resistance, and higher serum HDL cholesterol levels, primarily in Tg2576 mice, which also had higher brain lipids content. In terms of behavior, Tg2576 HFD mice were less active and more anxious, but had better learning in the Morris Water Maze compared to Tg2576 on regular diet. HFD had no effect on the level of amyloid beta 1-42 in the cortex of Tg2576 mice, but increased the transcription level of insulin receptor in the hippocampus. Tg2576 mice on regular diet demonstrated more BBB disruption at 8 and 12 months accompanied by larger lateral ventricles volume in contrast to Tg2576 HFD mice, whose BBB leakage and ventricular volume were similar to wild-type (WT) mice. Our results suggest that in AD, HFD may promote better cognitive function through improvements of BBB function and of brain atrophy but not of amyloid beta levels. Lipid metabolism in the CNS and peripheral tissues and brain insulin signaling may underlie this protection.


Assuntos
Doença de Alzheimer/patologia , Barreira Hematoencefálica/patologia , Dieta Hiperlipídica , Doença de Alzheimer/sangue , Doença de Alzheimer/complicações , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Animais , Ansiedade/sangue , Ansiedade/complicações , Ansiedade/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Genótipo , Resistência à Insulina , Lipídeos/sangue , Aprendizagem em Labirinto , Camundongos Transgênicos , Tamanho do Órgão , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Aprendizagem Espacial , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...