Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Biol ; 434(6): 167421, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-34954236

RESUMO

Human SERINC5 (SER5) protein is a recently described restriction factor against human immunodeficiency virus-1 (HIV-1), which is antagonized by HIV-1 Nef protein. Other retroviral accessory proteins such as the glycosylated Gag (glycoGag) from the murine leukemia virus (MLV) can also antagonize SER5. In addition, some viruses escape SER5 restriction by expressing a SER5-insensitive envelope (Env) glycoprotein. Here, we studied the activity of human and feline SER5 on HIV-1 and on the two pathogenic retroviruses in cats, feline immunodeficiency virus (FIV) and feline leukemia virus (FeLV). HIV-1 in absence of Nef is restricted by SER5 from domestic cats and protected by its Nef protein. The sensitivity of feline retroviruses FIV and FeLV to human and feline SER5 is considerably different: FIV is sensitive to feline and human SER5 and lacks an obvious mechanism to counteract SER5 activity, while FeLV is relatively resistant to SER5 inhibition. We speculated that similar to MLV, FeLV-A or FeLV-B express glycoGag proteins and investigated their function against human and feline SER5 in wild type and envelope deficient virus variants. We found that the endogenous FeLV recombinant virus, FeLV-B but not wild type exogenous FeLV-A envelope mediates a strong resistance against human and feline SER5. GlycoGag has an additional but moderate role to enhance viral infectivity in the presence of SER5 that seems to be dependent on the FeLV envelope. These findings may explain, why in vivo FeLV-B has a selective advantage and causes higher FeLV levels in infected cats compared to infections of FeLV-A only.


Assuntos
HIV-1 , Vírus da Imunodeficiência Felina , Vírus da Leucemia Felina , Proteínas de Membrana , Proteínas do Envelope Viral , Produtos do Gene nef do Vírus da Imunodeficiência Humana , Animais , Gatos , Glicosilação , HIV-1/fisiologia , Humanos , Vírus da Imunodeficiência Felina/fisiologia , Vírus da Leucemia Felina/fisiologia , Proteínas de Membrana/fisiologia , Proteínas do Envelope Viral/fisiologia , Produtos do Gene nef do Vírus da Imunodeficiência Humana/fisiologia
2.
J Virol ; 94(23)2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-32907979

RESUMO

Pandemic human immunodeficiency virus type 1 (HIV-1) is the result of the zoonotic transmission of simian immunodeficiency virus (SIV) from the chimpanzee subspecies Pan troglodytestroglodytes (SIVcpzPtt). The related subspecies Pan troglodytesschweinfurthii is the host of a similar virus, SIVcpzPts, which did not spread to humans. We tested these viruses with small-molecule capsid inhibitors (PF57, PF74, and GS-CA1) that interact with a binding groove in the capsid that is also used by CPSF6. While HIV-1 was sensitive to capsid inhibitors in cell lines, human macrophages, and peripheral blood mononuclear cells (PBMCs), SIVcpzPtt was resistant in rhesus FRhL-2 cells and human PBMCs but was sensitive to PF74 in human HOS and HeLa cells. SIVcpzPts was insensitive to PF74 in FRhL-2 cells, HeLa cells, PBMCs, and macrophages but was inhibited by PF74 in HOS cells. A truncated version of CPSF6 (CPSF6-358) inhibited SIVcpzPtt and HIV-1, while in contrast, SIVcpzPts was resistant to CPSF6-358. Homology modeling of HIV-1, SIVcpzPtt, and SIVcpzPts capsids and binding energy estimates suggest that these three viruses bind similarly to the host proteins cyclophilin A (CYPA) and CPSF6 as well as the capsid inhibitor PF74. Cyclosporine treatment, mutation of the CYPA-binding loop in the capsid, or CYPA knockout eliminated the resistance of SIVcpzPts to PF74 in HeLa cells. These experiments revealed that the antiviral capacity of PF74 is controlled by CYPA in a virus- and cell type-specific manner. Our data indicate that SIVcpz viruses can use infection pathways that escape the antiviral activity of PF74. We further suggest that the antiviral activity of PF74 capsid inhibitors depends on cellular cofactors.IMPORTANCE HIV-1 originated from SIVcpzPtt but not from the related virus SIVcpzPts, and thus, it is important to describe molecular infection by SIVcpzPts in human cells to understand the zoonosis of SIVs. Pharmacological HIV-1 capsid inhibitors (e.g., PF74) bind a capsid groove that is also a binding site for the cellular protein CPSF6. SIVcpzPts was resistant to PF74 in HeLa cells but sensitive in HOS cells, thus indicating cell line-specific resistance. Both SIVcpz viruses showed resistance to PF74 in human PBMCs. Modulating the presence of cyclophilin A or its binding to capsid in HeLa cells overcame SIVcpzPts resistance to PF74. These results indicate that early cytoplasmic infection events of SIVcpzPts may differ between cell types and affect, in an unknown manner, the antiviral activity of capsid inhibitors. Thus, capsid inhibitors depend on the activity or interaction of currently uncharacterized cellular factors.


Assuntos
Fármacos Anti-HIV/farmacologia , Proteínas do Capsídeo/química , Proteínas do Capsídeo/efeitos dos fármacos , Proteínas do Capsídeo/metabolismo , Capsídeo/efeitos dos fármacos , Vírus da Imunodeficiência Símia/efeitos dos fármacos , Fatores de Poliadenilação e Clivagem de mRNA/química , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Animais , Sítios de Ligação , Proteínas do Capsídeo/genética , Linhagem Celular , Ciclofilina A/genética , Ciclofilina A/metabolismo , Técnicas de Inativação de Genes , Células HEK293 , HIV-1 , Células HeLa , Humanos , Indazóis/farmacologia , Indóis/farmacologia , Leucócitos Mononucleares/virologia , Macrófagos/virologia , Modelos Moleculares , Pan troglodytes/virologia , Fenilalanina/análogos & derivados , Fenilalanina/farmacologia , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Piridinas/farmacologia , Alinhamento de Sequência , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/química , Vírus da Imunodeficiência Símia/genética , Zoonoses , Fatores de Poliadenilação e Clivagem de mRNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...