Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Amino Acids ; 48(8): 1843-55, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27085634

RESUMO

Creatine (Cr) is produced endogenously in the liver or obtained exogenously from foods, such as meat and fish. In the human body, 95 % of Cr is located in the cytoplasm of skeletal muscle either in a phosphorylated (PCr) or free form (Cr). PCr is essential for the immediate rephosphorylation of adenosine diphosphate to adenosine triphosphate. PCr is rapidly degraded at the onset of maximal exercise at a rate that results in muscle PCr reservoirs being substantially depleted. A well-established strategy followed to increase muscle total Cr content is to increase exogenous intake by supplementation with chemically pure synthetic Cr. Most Cr supplementation regimens typically follow a well-established loading protocol of 20 g day(-1) of Cr for approximately 5-7 days, followed by a maintenance dose at between 2 and 5 g day(-1) for the duration of interest, although more recent studies tend to utilize a 0.3-g kg(-1) day(-1) supplementation regimen. Some studies have also investigated long-term supplementation of up to 1 year. Uptake of Cr is enhanced when taken together with carbohydrate and protein and/or while undertaking exercise. Cr supplementation has been shown to augment muscle total Cr content and enhance anaerobic performance; however, there is also some evidence of indirect benefits to aerobic endurance exercise through enhanced thermoregulation. While there is an abundance of data supporting the ergogenic effects of Cr supplementation in a variety of different applications, some individuals do not respond, the efficacy of which is dependent on a number of factors, such as dose, age, muscle fiber type, and diet, although further work in this field is warranted. Cr is increasingly being used in the management of some clinical conditions to enhance muscle mass and strength. The application of Cr in studies of health and disease has widened recently with encouraging results in studies involving sleep deprivation and cognitive performance.


Assuntos
Regulação da Temperatura Corporal/efeitos dos fármacos , Cognição/efeitos dos fármacos , Creatina/farmacologia , Músculo Esquelético/fisiologia , Animais , Creatina/farmacocinética , Humanos , Fatores de Tempo
2.
Scand J Med Sci Sports ; 26(4): 413-20, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25913546

RESUMO

Hamstring injury is prevalent with persistently high reinjury rates. We aim to inform hamstring rehabilitation by exploring the electromyographic and kinematic characteristics of running in athletes with previous hamstring injury. Nine elite male Gaelic games athletes who had returned to sport after hamstring injury and eight closely matched controls sprinted while lower limb kinematics and muscle activity of the previously injured biceps femoris, bilateral gluteus maximus, lumbar erector spinae, rectus femoris, and external oblique were recorded. Intergroup comparisons of muscle activation ratios and kinematics were performed. Previously injured athletes demonstrated significantly reduced biceps femoris muscle activation ratios with respect to ipsilateral gluteus maximus (maximum difference -12.5%, P = 0.03), ipsilateral erector spinae (maximum difference -12.5%, P = 0.01), ipsilateral external oblique (maximum difference -23%, P = 0.01), and contralateral rectus femoris (maximum difference -22%, P = 0.02) in the late swing phase. We also detected sagittal asymmetry in hip flexion (maximum 8°, P = 0.01), pelvic tilt (maximum 4°, P = 0.02), and medial rotation of the knee (maximum 6°, P = 0.03) effectively putting the hamstrings in a lengthened position just before heel strike. Previous hamstring injury is associated with altered biceps femoris associated muscle activity and potentially injurious kinematics. These deficits should be considered and addressed during rehabilitation.


Assuntos
Desempenho Atlético/fisiologia , Traumatismos da Perna , Músculo Esquelético/lesões , Músculo Esquelético/fisiologia , Corrida/fisiologia , Adulto , Atletas , Fenômenos Biomecânicos , Estudos de Casos e Controles , Eletromiografia , Humanos , Masculino , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA