Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 273
Filtrar
1.
Mol Cell Biochem ; 479(4): 825-829, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37198322

RESUMO

One in 700 children is born with the down syndrome (DS). In DS, there is an extra copy of X chromosome 21 (trisomy). Interestingly, the chromosome 21 also contains an extra copy of the cystathionine beta synthase (CBS) gene. The CBS activity is known to contribute in mitochondrial sulfur metabolism via trans-sulfuration pathway. We hypothesize that due to an extra copy of the CBS gene there is hyper trans-sulfuration in DS. We believe that understanding the mechanism of hyper trans-sulfuration during DS will be important in improving the quality of DS patients and towards developing new treatment strategies. We know that folic acid "1-carbon" metabolism (FOCM) cycle transfers the "1-carbon" methyl group to DNA (H3K4) via conversion of s-adenosyl methionine (SAM) to s-adenosyl homocysteine (SAH) by DNMTs (the gene writers). The demethylation reaction is carried out by ten-eleven translocation methylcytosine dioxygenases (TETs; the gene erasers) through epigenetics thus turning the genes off/on and opening the chromatin by altering the acetylation/HDAC ratio. The S-adenosyl homocysteine hydrolase (SAHH) hydrolyzes SAH to homocysteine (Hcy) and adenosine. The Hcy is converted to cystathionine, cysteine and hydrogen sulfide (H2S) via CBS/cystathioneγ lyase (CSE)/3-mercaptopyruvate sulfurtransferase (3MST) pathways. Adenosine by deaminase is converted to inosine and then to uric acid. All these molecules remain high in DS patients. H2S is a potent inhibitor of mitochondrial complexes I-IV, and regulated by UCP1. Therefore, decreased UCP1 levels and ATP production can ensue in DS subjects. Interestingly, children born with DS show elevated levels of CBS/CSE/3MST/Superoxide dismutase (SOD)/cystathionine/cysteine/H2S. We opine that increased levels of epigenetic gene writers (DNMTs) and decreased in gene erasers (TETs) activity cause folic acid exhaustion, leading to an increase in trans-sulphuration by CBS/CSE/3MST/SOD pathways. Thus, it is important to determine whether SIRT3 (inhibitor of HDAC3) can decrease the trans-sulfuration activity in DS patients. Since there is an increase in H3K4 and HDAC3 via epigenetics in DS, we propose that sirtuin-3 (Sirt3) may decrease H3K4 and HDAC3 and hence may be able to decrease the trans-sulfuration in DS. It would be worth to determine whether the lactobacillus, a folic acid producing probiotic, mitigates hyper-trans-sulphuration pathway in DS subjects. Further, as we know that in DS patients the folic acid is exhausted due to increase in CBS, Hcy and re-methylation. In this context, we suggest that folic acid producing probiotics such as lactobacillus might be able to improve re-methylation process and hence may help decrease the trans-sulfuration pathway in the DS patients.


Assuntos
Síndrome de Down , Sulfeto de Hidrogênio , Nefropatias , Sirtuína 3 , Criança , Humanos , Cistationina/genética , Cistationina/metabolismo , Síndrome de Down/genética , Trissomia , Cisteína , Sirtuína 3/genética , Cistationina beta-Sintase/genética , Cistationina beta-Sintase/metabolismo , Sulfeto de Hidrogênio/metabolismo , S-Adenosilmetionina , Superóxido Dismutase/metabolismo , Adenosina , Nefropatias/metabolismo , Ácido Fólico , Homocisteína , Carbono , Cistationina gama-Liase/genética , Cistationina gama-Liase/metabolismo
2.
Can J Physiol Pharmacol ; 102(2): 105-115, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37979203

RESUMO

Previous studies from our laboratory revealed that the gaseous molecule hydrogen sulfide (H2S), a metabolic product of epigenetics, involves trans-sulfuration pathway for ensuring metabolism and clearance of homocysteine (Hcy) from body, thereby mitigating the skeletal muscle's pathological remodeling. Although the master circadian clock regulator that is known as brain and muscle aryl hydrocarbon receptor nuclear translocator like protein 1 (i.e., BMAL 1) is associated with S-adenosylhomocysteine hydrolase (SAHH) and Hcy metabolism but how trans-sulfuration pathway is influenced by the circadian clock remains unexplored. We hypothesize that alterations in the functioning of circadian clock during sleep and wake cycle affect skeletal muscle's biology. To test this hypothesis, we measured serum matrix metalloproteinase (MMP) activities using gelatin gels for analyzing the MMP-2 and MMP-9. Further, employing casein gels, we also studied MMP-13 that is known to be influenced by the growth arrest and DNA damage-45 (GADD45) protein during sleep and wake cycle. The wild type and cystathionine ß synthase-deficient (CBS-/+) mice strains were treated with H2S and subjected to measurement of trans-sulfuration factors from skeletal muscle tissues. The results suggested highly robust activation of MMPs in the wake mice versus sleep mice, which appears somewhat akin to the "1-carbon metabolic dysregulation", which takes place during remodeling of extracellular matrix during muscular dystrophy. Interestingly, the levels of trans-sulfuration factors such as CBS, cystathionine γ lyase (CSE), methyl tetrahydrofolate reductase (MTHFR), phosphatidylethanolamine N-methyltransferase (PEMT), and Hcy-protein bound paraoxonase 1 (PON1) were attenuated in CBS-/+ mice. However, treatment with H2S mitigated the attenuation of the trans-sulfuration pathway. In addition, levels of mitochondrial peroxisome proliferator-activated receptor-gamma coactivator 1-α (PGC 1-α) and mitofusin-2 (MFN-2) were significantly improved by H2S intervention. Our findings suggest participation of the circadian clock in trans-sulfuration pathway that affects skeletal muscle remodeling and mitochondrial regeneration.


Assuntos
Relógios Circadianos , Sulfeto de Hidrogênio , Animais , Camundongos , Sulfeto de Hidrogênio/metabolismo , Cistationina beta-Sintase , Músculo Esquelético/metabolismo , Géis , Cistationina gama-Liase/metabolismo , Fosfatidiletanolamina N-Metiltransferase
3.
Npj Viruses ; 12023.
Artigo em Inglês | MEDLINE | ID: mdl-38077924

RESUMO

Previous studies from our laboratory revealed that SARS-CoV-2 spike protein (SP) administration to a genetically engineered model expressing the human angiotensin-converting enzyme 2; ACE2 receptor (i.e., hACE2 humanized mouse) mimicked the coronavirus disease-19 (COVID-19) pathology. In humans the cause of high morbidity, and mortality is due to 'cytokine-storm' led thromboembolism; however, the exact mechanisms of COVID-19 associated coagulopathy (CAC) have yet to be discovered. Current knowledge suggests that CAC is distinct from the standard coagulopathy, in that the intrinsic and extrinsic thrombin-dependent coagulation factors, and the pathway(s) that are common to coagulopathy, are not recruited by SARS-CoV-2. Findings from patients revealed that there is little change in their partial thromboplastin, or the prothrombin time coupled with a significant decline in platelets. Further, there appears to be an endothelial dysfunction during COVID-19 suggesting an interaction of the endothelia with immune cells including neutrophils. There are also reports that inflammatory NGAL is elevated during COVID-19. Furthermore, the levels of NPT are also increased indicating an increase in inflammatory M1 macrophage iNOS which sequesters BH4; an essential enzyme co-factor that acts as a potent antioxidant thus causing damage to endothelia. SARS-CoV-2 entry into the host cells is facilitated by a co-operative action between TMPRSS2 and the main ACE2 receptor. Interestingly, after infection ADAMTS13; a von Willebrand factor; VWF cleaving enzyme is found to be decreased. Based on these facts, we hypothesize that vascular thromboembolism is associated with serine and metalloproteinase, and in that context, we opine that inhibition of iNOS might help mitigate COVID-19 harmful effects. To test this hypothesis, we administered SP to the hACE2 mice that were subsequently treated with amino guanidine (AG; a potent inhibitor of glycoxidation, lipoxidation and oxidative vicious cycles). Our results revealed increase in TMPRSS2, and NGAL by SP but treatment with AG mitigated their levels. Similarly, levels of MMP-2, and -9 were increased; however, AG treatment normalized these levels. Our findings suggest that occurrence of CAC is influenced by TMPRSS2, ADAMTS13, NGAL and MMP- 2, and -9 factors, and an intervention with iNOS blocker helped mitigate the CAC condition in experimental settings.

4.
Can J Physiol Pharmacol ; 101(8): 413-424, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37207360

RESUMO

Porphyromonas gingivalis (P. gingivalis) is one of the most responsible periodontopathogenic bacteria in the development of periodontal disease (PD); however, its role in the development of other diseases still needs to be understood, specially its implications in the causation of cardiovascular pathogenesis. The aim of this study is to determine whether there is a direct association between P. gingivalis-induced PD with that of the development of cardiovascular disease, and whether a long-term administration of probiotic(s) could help improve the cardiovascular disease outcome. To test this hypothesis, we employed four different experimental groups of mice, designated as: Group I: Wild-type (WT) mice (C57BL/6J); Group II: Lactobacillus rhamnosus GG (LGG) (WT mice treated with a probiotic; LGG), Group III: PD (WT mice treated with P. gingivalis), and Group IV: PD + LGG (WT mice treated with P. gingivalis and LGG). PD was created by injecting 2 µL (i.e., 20 µg) of P. gingivalis lipopolysaccharide (LPS) intragingivally between the 1st and 2nd mandibular molars, two times a week for a total period of 6 weeks. The PD (LGG) intervention was done orally employing 2.5 × 105 CFU/day for a continuous period of 12 weeks. Immediately before the mice were sacrificed, echocardiography of the heart was performed, and after sacrifice, we collected serum samples, hearts, and the periodontal tissue. Histological assessment, cytokine analysis, and zymography of the cardiac tissue were performed. Results revealed inflammation of the heart muscle in the PD group that was marked by infiltration of neutrophils and monocytes, followed by fibrosis. Cytokine analysis of the mice sera revealed significantly elevated levels of tumor necrosis factor-α, IL-1ß, IL-6, and IL-17A in the PD group along with LPS-binding protein, and CD14. Most importantly, we observed elevated levels of P. gingivalis mRNAs in the heart tissues of PD mice. Zymographic analysis demonstrated matrix remodeling as revealed by increasing content of MMP-9 in the heart tissues of PD mice. Interestingly, LGG treatment was able to mitigate most of the pathological effects. The findings suggest that P. gingivalis could lead to cardiovascular system disorder and that probiotic intervention could alleviate, and most likely prevent bacteremia and its harmful effect(s) on the cardiovascular function.

5.
Int J Mol Sci ; 24(8)2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37108465

RESUMO

Renal denervation (RDN) protects against hypertension, hypertrophy, and heart failure (HF); however, it is not clear whether RDN preserves ejection fraction (EF) during heart failure (HFpEF). To test this hypothesis, we simulated a chronic congestive cardiopulmonary heart failure (CHF) phenotype by creating an aorta-vena cava fistula (AVF) in the C57BL/6J wild type (WT) mice. Briefly, there are four ways to create an experimental CHF: (1) myocardial infarction (MI), which is basically ligating the coronary artery by instrumenting and injuring the heart; (2) trans-aortic constriction (TAC) method, which mimics the systematic hypertension, but again constricts the aorta on top of the heart and, in fact, exposes the heart; (3) acquired CHF condition, promoted by dietary factors, diabetes, salt, diet, etc., but is multifactorial in nature; and finally, (4) the AVF, which remains the only one wherein AVF is created ~1 cm below the kidneys in which the aorta and vena cava share the common middle-wall. By creating the AVF fistula, the red blood contents enter the vena cava without an injury to the cardiac tissue. This model mimics or simulates the CHF phenotype, for example, during aging wherein with advancing age, the preload volume keeps increasing beyond the level that the aging heart can pump out due to the weakened cardiac myocytes. Furthermore, this procedure also involves the right ventricle to lung to left ventricle flow, thus creating an ideal condition for congestion. The heart in AVF transitions from preserved to reduced EF (i.e., HFpEF to HFrEF). In fact, there are more models of volume overload, such as the pacing-induced and mitral valve regurgitation, but these are also injurious models in nature. Our laboratory is one of the first laboratories to create and study the AVF phenotype in the animals. The RDN was created by treating the cleaned bilateral renal artery. After 6 weeks, blood, heart, and renal samples were analyzed for exosome, cardiac regeneration markers, and the renal cortex proteinases. Cardiac function was analyzed by echocardiogram (ECHO) procedure. The fibrosis was analyzed with a trichrome staining method. The results suggested that there was a robust increase in the exosomes' level in AVF blood, suggesting a compensatory systemic response during AVF-CHF. During AVF, there was no change in the cardiac eNOS, Wnt1, or ß-catenin; however, during RDN, there were robust increases in the levels of eNOS, Wnt1, and ß-catenin compared to the sham group. As expected in HFpEF, there was perivascular fibrosis, hypertrophy, and pEF. Interestingly, increased levels of eNOS suggested that despite fibrosis, the NO generation was higher and that it most likely contributed to pEF during HF. The RDN intervention revealed an increase in renal cortical caspase 8 and a decrease in caspase 9. Since caspase 8 is protective and caspase 9 is apoptotic, we suggest that RDN protects against the renal stress and apoptosis. It should be noted that others have demonstrated a role of vascular endothelium in preserving the ejection by cell therapy intervention. In the light of foregoing evidence, our findings also suggest that RDN is cardioprotective during HFpEF via preservation of the eNOS and accompanied endocardial-endothelial function.


Assuntos
Insuficiência Cardíaca , Hipertensão , Camundongos , Animais , Caspase 8 , Caspase 9 , beta Catenina , Volume Sistólico , Camundongos Endogâmicos C57BL , Rim/patologia , Miócitos Cardíacos/patologia , Hipertensão/patologia , Denervação , Hipertrofia/patologia , Fibrose
6.
Mol Cell Biochem ; 478(1): 103-119, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35731343

RESUMO

The ongoing pandemic (also known as coronavirus disease-19; COVID-19) by a constantly emerging viral agent commonly referred as the severe acute respiratory syndrome corona virus 2 or SARS-CoV-2 has revealed unique pathological findings from infected human beings, and the postmortem observations. The list of disease symptoms, and postmortem observations is too long to mention; however, SARS-CoV-2 has brought with it a whole new clinical syndrome in "long haulers" including dyspnea, chest pain, tachycardia, brain fog, exercise intolerance, and extreme fatigue. We opine that further improvement in delivering effective treatment, and preventive strategies would be benefited from validated animal disease models. In this context, we designed a study, and show that a genetically engineered mouse expressing the human angiotensin converting enzyme 2; ACE-2 (the receptor used by SARS-CoV-2 agent to enter host cells) represents an excellent investigative resource in simulating important clinical features of the COVID-19. The ACE-2 mouse model (which is susceptible to SARS-CoV-2) when administered with a recombinant SARS-CoV-2 spike protein (SP) intranasally exhibited a profound cytokine storm capable of altering the physiological parameters including significant changes in cardiac function along with multi-organ damage that was further confirmed via histological findings. More importantly, visceral organs from SP treated mice revealed thrombotic blood clots as seen during postmortem examination. Thus, the ACE-2 engineered mouse appears to be a suitable model for studying intimate viral pathogenesis thus paving the way for identification, and characterization of appropriate prophylactics as well as therapeutics for COVID-19 management.


Assuntos
COVID-19 , Animais , Humanos , Camundongos , Modelos Animais de Doenças , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética
7.
Sci Rep ; 12(1): 21707, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36522378

RESUMO

Diabetic nephropathy is characterized by excessive accumulation of extracellular matrix (ECM) leading to renal fibrosis, progressive deterioration of renal function, and eventually to end stage renal disease. Matrix metalloproteinases (MMPs) are known to regulate synthesis and degradation of the ECM. Earlier, we demonstrated that imbalanced MMPs promote adverse ECM remodeling leading to renal fibrosis in type-1 diabetes. Moreover, elevated macrophage infiltration, pro-inflammatory cytokines and epithelial‒mesenchymal transition (EMT) are known to contribute to the renal fibrosis. Various bioactive compounds derived from the medicinal plant, Azadirachta indica (neem) are shown to regulate inflammation and ECM proteins in different diseases. Nimbidiol is a neem-derived diterpenoid that is considered as a potential anti-diabetic compound due to its glucosidase inhibitory properties. We investigated whether Nimbidiol mitigates adverse ECM accumulation and renal fibrosis to improve kidney function in type-1 diabetes and the underlying mechanism. Wild-type (C57BL/6J) and type-1 diabetic (C57BL/6-Ins2Akita/J) mice were treated either with saline or with Nimbidiol (0.40 mg kg-1 d-1) for eight weeks. Diabetic kidney showed increased accumulation of M1 macrophages, elevated pro-inflammatory cytokines and EMT. In addition, upregulated MMP-9 and MMP-13, excessive collagen deposition in the glomerular and tubulointerstitial regions, and degradation of vascular elastin resulted to renal fibrosis in the Akita mice. These pathological changes in the diabetic mice were associated with functional impairments that include elevated resistive index and reduced blood flow in the renal cortex, and decreased glomerular filtration rate. Furthermore, TGF-ß1, p-Smad2/3, p-P38, p-ERK1/2 and p-JNK were upregulated in diabetic kidney compared to WT mice. Treatment with Nimbidiol reversed the changes to alleviate inflammation, ECM accumulation and fibrosis and thus, improved renal function in Akita mice. Together, our results suggest that Nimbidiol attenuates inflammation and ECM accumulation and thereby, protects kidney from fibrosis and dysfunction possibly by inhibiting TGF-ß/Smad and MAPK signaling pathways in type-1 diabetes.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Nefropatias Diabéticas , Diterpenos , Camundongos , Animais , Nefropatias Diabéticas/patologia , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Camundongos Endogâmicos C57BL , Fibrose , Fator de Crescimento Transformador beta1/metabolismo , Rim/metabolismo , Diterpenos/metabolismo , Inflamação/patologia , Glucosidases
8.
Life Sci ; 308: 120982, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36150460

RESUMO

Calpain-1 is a ubiquitous calcium dependent cysteine protease and found in cytoplasm as well as mitochondria. We have earlier reported that active calpain-1 is translocated from cytosol to mitochondria and activates MMP9. Calpain-1 activation is detrimental to the heart in several different ways, but there is little evidence that it can degrade Purkinje cell protein (PCP-4) and impair contractility in diabetes. Our hypothesis is that in diabetes, PCP-4 is degraded by calpain-1, causing contractile dysfunction that can be mitigated by exercise. To test this hypothesis, we recruited four groups of mice, 1) db/+ control, 2) db/+ with exercise, 3) db/db, 4) db/db with exercise. The mice were exercised on treadmill for 8 weeks as per American Veterinary Research Guidelines. Adding calcium to isolated cardiomyocytes caused them to lose shape and die. Compared with live myocytes, we observed high calpain-1 levels as well as significantly lower levels of PCP-4 and increased levels of calmodulin and calmodulin kinase II (CaMKII) in dead myocytes. We used the CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats) plasmid to knock down calpain-1 in HL-1 myocytes which restored the levels of PCP-4 along with calmodulin and CaMKII. In vivo, we found upregulated levels of calpain-1 in db/db mice (diabetic) as compared to db/+ which were mitigated in the exercised mice. Conclusively our data strongly suggests that in diabetes there is high induction of calpain-1 with degrades PCP-4, a protein important for contractility and exercise can mitigate this.


Assuntos
Calpaína , Diabetes Mellitus , Animais , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Calmodulina/metabolismo , Calpaína/metabolismo , Diabetes Mellitus/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Miócitos Cardíacos/metabolismo , Células de Purkinje/metabolismo
9.
Physiol Rep ; 10(16): e15422, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35986494

RESUMO

Ketone bodies (KB) serve as the food for mitochondrial biogenetics. Interestingly, probiotics are known to promote KB formation in the gut (especially those that belong to the Lactobacillus genus). Furthermore, Lactobacillus helps produce folate that lowers the levels of homocysteine (Hcy); a hallmark non-proteinogenic amino acid that defines the importance of epigenetics, and its landscape. In this study, we decided to test whether hydrogen sulfide (H2 S), another Hcy lowering agent regulates the epigenetic gene writer DNA methyltransferase (DNMT), eraser FTO and TET2, and thus mitigates the skeletal muscle remodeling. We treated hyperhomocysteinemic (HHcy, cystathionine beta-synthase heterozygote knockout; CBS+/- ) mice with NaHS (the H2 S donor). The results suggested multi-organ damage by HHcy in the CBS+/- mouse strain compared with WT control mice (CBS+/+ ). H2 S treatment abrogated most of the HHcy-induced damage. The levels of gene writer (DNMT2) and H3K9 (methylation) were higher in the CBS+/- mice, and the H2 S treatment normalized their levels. More importantly, the levels of eraser FTO, TET, and associated GADD45, and MMP-13 were decreased in the CBS+/- mice; however, H2 S treatment mitigated their respective decrease. These events were associated with mitochondrial fission, i.e., an increase in DRP1, and mitophagy. Although the MMP-2 level was lower in CBS+/- compared to WT but H2 S could further lower it in the CBS+/- mice. The MMPs levels were associated with an increase in interstitial fibrosis in the CBS+/- skeletal muscle. Due to fibrosis, the femoral artery blood flow was reduced in the CBS+/- mice, and that was normalized by H2 S. The bone and muscle strengths were found to be decreased in the CBS+/- mice but the H2 S treatment normalized skeletal muscle strength in the CBS+/- mice. Our findings suggest that H2 S mitigates the mitophagy-led skeletal muscle remodeling via epigenetic regulation of the gene writer and eraser function.


Assuntos
Sulfeto de Hidrogênio , Animais , Epigênese Genética , Fibrose , Sulfeto de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/farmacologia , Camundongos , Mitofagia , Músculo Esquelético/metabolismo
10.
Biochem Biophys Res Commun ; 620: 180-187, 2022 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-35803174

RESUMO

Diabetes mellitus (DM), hypertension, and cardiovascular diseases (CVDs) are the leading chronic comorbidities that enhance the severity and mortality of COVID-19 cases. However, SARS-CoV-2 mediated deregulation of diabetes pathophysiology and comorbidity that links the skeletal bone loss remain unclear. We used both streptozocin-induced type 2 diabetes (T2DM) mouse and hACE2 transgenic mouse to enable SARS-CoV-2-receptor binding domain (RBD) mediated abnormal glucose metabolism and bone loss phenotype in mice. The data demonstrate that SARS-CoV-2-RBD treatment in pre-existing diabetes conditions in hACE2 (T2DM + RBD) mice results in the aggravated osteoblast inflammation and downregulation of Glucose transporter 4 (Glut4) expression via upregulation of miR-294-3p expression. The data also found increased fasting blood glucose and reduced insulin sensitivity in the T2DM + RBD condition compared to the T2DM condition. Femoral trabecular bone mass loss and bone mechanical quality were further reduced in T2DM + RBD mice. Mechanistically, silencing of miR-294 function improved Glut4 expression, glucose metabolism, and bone formation in T2DM + RBD + anti-miR-294 mice. These data uncover the previously undefined role of SARS-CoV-2-RBD treatment mediated complex pathological symptoms of diabetic COVID-19 mice with abnormal bone metabolism via a miRNA-294/Glut4 axis. Therefore, this work would provide a better understanding of the interplay between diabetes and SARS-CoV-2 infection.


Assuntos
COVID-19 , Diabetes Mellitus Tipo 2 , Intolerância à Glucose , MicroRNAs , Animais , COVID-19/complicações , Diabetes Mellitus Tipo 2/genética , Glucose/metabolismo , Camundongos , MicroRNAs/genética , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus
11.
Int J Mol Sci ; 24(1)2022 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-36613731

RESUMO

Although progressive wasting and weakness of respiratory muscles are the prominent hallmarks of Duchenne muscular dystrophy (DMD) and long-COVID (also referred as the post-acute sequelae of COVID-19 syndrome); however, the underlying mechanism(s) leading to respiratory failure in both conditions remain unclear. We put together the latest relevant literature to further understand the plausible mechanism(s) behind diaphragm malfunctioning in COVID-19 and DMD conditions. Previously, we have shown the role of matrix metalloproteinase-9 (MMP9) in skeletal muscle fibrosis via a substantial increase in the levels of tumor necrosis factor-α (TNF-α) employing a DMD mouse model that was crossed-bred with MMP9-knockout (MMP9-KO or MMP9-/-) strain. Interestingly, recent observations from clinical studies show a robust increase in neopterin (NPT) levels during COVID-19 which is often observed in patients having DMD. What seems to be common in both (DMD and COVID-19) is the involvement of neopterin (NPT). We know that NPT is generated by activated white blood cells (WBCs) especially the M1 macrophages in response to inducible nitric oxide synthase (iNOS), tetrahydrobiopterin (BH4), and tetrahydrofolate (FH4) pathways, i.e., folate one-carbon metabolism (FOCM) in conjunction with epigenetics underpinning as an immune surveillance protection. Studies from our laboratory, and others researching DMD and the genetically engineered humanized (hACE2) mice that were administered with the spike protein (SP) of SARS-CoV-2 revealed an increase in the levels of NPT, TNF-α, HDAC, IL-1ß, CD147, and MMP9 in the lung tissue of the animals that were subsequently accompanied by fibrosis of the diaphragm depicting a decreased oscillation phenotype. Therefore, it is of interest to understand how regulatory processes such as epigenetics involvement affect DNMT, HDAC, MTHFS, and iNOS that help generate NPT in the long-COVID patients.


Assuntos
COVID-19 , Distrofia Muscular de Duchenne , Animais , Humanos , Camundongos , Metaloproteinase 9 da Matriz/metabolismo , Camundongos Endogâmicos mdx , Fator de Necrose Tumoral alfa/metabolismo , Síndrome de COVID-19 Pós-Aguda , Neopterina/metabolismo , COVID-19/patologia , SARS-CoV-2 , Distrofia Muscular de Duchenne/genética , Fibrose , Músculo Esquelético/metabolismo , Modelos Animais de Doenças
12.
Front Physiol ; 12: 745328, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34858202

RESUMO

During acute heart failure (HF), remote ischemic conditioning (RIC) has proven to be beneficial; however, it is currently unclear whether it also extends benefits from chronic congestive, cardiopulmonary heart failure (CHF). Previous studies from our laboratory have shown three phases describing CHF viz. (1) HF with preserved ejection fraction (HFpEF), (2) HF with reduced EF (HFrEF), and (3) HF with reversed EF. Although reciprocal organ interaction, ablation of sympathetic, and calcium signaling genes are associated with HFpEF to HFrEF, the mechanism is unclear. The HFrEF ensues, in part, due to reduced angiogenesis, coronary reserve, and leakage of endocardial endothelial (EE) and finally breakdown of the blood-heart barrier (BHB) integrity. In fact, our hypothesis states that a change in phenotype from compensatory HFpEF to decompensatory HFrEF is determined by a potential decrease in regenerative, proangiogenic factors along with a concomitant increase in epigenetic memory, inflammation that combinedly causes oxidative, and proteolytic stress response. To test this hypothesis, we created CHF by aorta-vena-cava (AV) fistula in a group of mice that were subsequently treated with that of hind-limb RIC. HFpEF vs. HFrEF transition was determined by serial/longitudinal echo measurements. Results revealed an increase in skeletal muscle musclin contents, bone-marrow (CD71), and sympathetic activation (ß2-AR) by RIC. We also observed a decrease in vascular density and attenuation of EE-BHB function due to a corresponding increase in the activity of MMP-2, vascular endothelial growth factor (VEGF), caspase, and calpain. This decrease was successfully mitigated by RIC-released skeletal muscle exosomes that contain musclin, the myokine along with bone marrow, and sympathetic activation. In short, based on proteome (omics) analysis, ∼20 proteins that appear to be involved in signaling pathways responsible for the synthesis, contraction, and relaxation of cardiac muscle were found to be the dominant features. Thus, our results support that the CHF phenotype causes dysfunction of cardiac metabolism, its contraction, and relaxation. Interestingly, RIC was able to mitigate many of the deleterious changes, as revealed by our multi-omics findings.

13.
Int J Mol Sci ; 22(24)2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34948342

RESUMO

Although blood-heart-barrier (BHB) leakage is the hallmark of congestive (cardio-pulmonary) heart failure (CHF), the primary cause of death in elderly, and during viral myocarditis resulting from the novel coronavirus variants such as the severe acute respiratory syndrome novel corona virus 2 (SARS-CoV-2) known as COVID-19, the mechanism is unclear. The goal of this project is to determine the mechanism of the BHB in CHF. Endocardial endothelium (EE) is the BHB against leakage of blood from endocardium to the interstitium; however, this BHB is broken during CHF. Previous studies from our laboratory, and others have shown a robust activation of matrix metalloproteinase-9 (MMP-9) during CHF. MMP-9 degrades the connexins leading to EE dysfunction. We demonstrated juxtacrine coupling of EE with myocyte and mitochondria (Mito) but how it works still remains at large. To test whether activation of MMP-9 causes EE barrier dysfunction, we hypothesized that if that were the case then treatment with hydroxychloroquine (HCQ) could, in fact, inhibit MMP-9, and thus preserve the EE barrier/juxtacrine signaling, and synchronous endothelial-myocyte coupling. To determine this, CHF was created by aorta-vena cava fistula (AVF) employing the mouse as a model system. The sham, and AVF mice were treated with HCQ. Cardiac hypertrophy, tissue remodeling-induced mitochondrial-myocyte, and endothelial-myocyte contractions were measured. Microvascular leakage was measured using FITC-albumin conjugate. The cardiac function was measured by echocardiography (Echo). Results suggest that MMP-9 activation, endocardial endothelial leakage, endothelial-myocyte (E-M) uncoupling, dyssynchronous mitochondrial fusion-fission (Mfn2/Drp1 ratio), and mito-myocyte uncoupling in the AVF heart failure were found to be rampant; however, treatment with HCQ successfully mitigated some of the deleterious cardiac alterations during CHF. The findings have direct relevance to the gamut of cardiac manifestations, and the resultant phenotypes arising from the ongoing complications of COVID-19 in human subjects.


Assuntos
COVID-19/complicações , Insuficiência Cardíaca/metabolismo , Coração/virologia , Animais , Sangue/virologia , Fenômenos Fisiológicos Sanguíneos/imunologia , COVID-19/fisiopatologia , Cardiomegalia/metabolismo , Doenças Cardiovasculares/metabolismo , Fenômenos Fisiológicos Cardiovasculares/imunologia , Modelos Animais de Doenças , Endotélio/metabolismo , Coração/fisiopatologia , Insuficiência Cardíaca/virologia , Hidroxicloroquina/farmacologia , Masculino , Metaloproteinase 9 da Matriz/efeitos dos fármacos , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Células Musculares/metabolismo , Miocárdio/metabolismo , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade , Remodelação Ventricular/fisiologia
14.
Mol Neurobiol ; 58(8): 3614-3627, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33774742

RESUMO

Traumatic brain injury (TBI) is a damage to the brain from an external force that results in temporary or permanent impairment in brain functions. Unfortunately, not many treatment options are available to TBI patients. Therefore, knowledge of the complex interplay between gut microbiome (GM) and brain health may shed novel insights as it is a rapidly expanding field of research around the world. Recent studies show that GM plays important roles in shaping neurogenerative processes such as blood-brain-barrier (BBB), myelination, neurogenesis, and microglial maturation. In addition, GM is also known to modulate many aspects of neurological behavior and cognition; however, not much is known about the role of GM in brain injuries. Since GM has been shown to improve cellular and molecular functions via mitigating TBI-induced pathologies such as BBB permeability, neuroinflammation, astroglia activation, and mitochondrial dysfunction, herein we discuss how a dysbiotic gut environment, which in fact, contributes to central nervous system (CNS) disorders during brain injury and how to potentially ward off these harmful effects. We further opine that a better understanding of GM-brain (GMB) axis could help assist in designing better treatment and management strategies in future for the patients who are faced with limited options.


Assuntos
Lesões Encefálicas Traumáticas/metabolismo , Eixo Encéfalo-Intestino/fisiologia , Encéfalo/metabolismo , Disbiose/metabolismo , Microbioma Gastrointestinal/fisiologia , Animais , Encéfalo/imunologia , Lesões Encefálicas Traumáticas/imunologia , Lesões Encefálicas Traumáticas/terapia , Disbiose/imunologia , Disbiose/terapia , Humanos , Mediadores da Inflamação/imunologia , Mediadores da Inflamação/metabolismo
15.
Front Physiol ; 12: 625780, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33746772

RESUMO

The gut microbiome has a very important role in human health and its influence on the development of numerous diseases is well known. In this study, we investigated the effect of high fat diet (HFD) on the onset of dysbiosis, gingival blood flow decreases, and the periodontal matrix remodeling. We established a dysbiosis model (HFD group) and probiotic model by Lactobacillus rhamnosus GG (LGG) treatment for 12weeks. Fecal samples were collected 24h before mice sacrificing, while short chain fatty acids (SCFA) analysis, DNA extraction, and sequencing for metagenomic analysis were performed afterwards. After sacrificing the animals, we collected periodontal tissues and conducted comprehensive morphological and genetic analyses. While HFD reduced Bacteroidetes, SCFA, and gingival blood flow, this type of diet increased Firmicutes, lipopolysaccharide (LPS) binding protein, TLR4, pro-inflammatory cytokines (TNF-α, IL-1ß, and IL-6), matrix metalloproteinases (MMP-2 and MMP-9) expression, and also altered markers of bone resorption (OPG and RANKL). However, LGG treatment mitigated these effects. Thus, it was observed that HFD increased molecular remodeling via inflammation, matrix degradation, and functional remodeling and consequently cause reduced gingival blood flow. All of these changes may lead to the alveolar bone loss and the development of periodontal disease.

16.
Am J Pathol ; 191(5): 947-964, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33640319

RESUMO

This study investigated the effects of long-term NF-κB inhibition in mitigating retinal vasculopathy in a type 1 diabetic mouse model (Akita, Ins2Akita). Akita and wild-type (C57BL/6J) male mice, 24 to 26 weeks old, were treated with or without a selective inhibitor of NF-κB, 4-methyl-N1-(3-phenyl-propyl) benzene-1,2-diamine (JSH-23), for 4 weeks. Treatment was given when the mice were at least 24 weeks old. Metabolic parameters, key inflammatory mediators, blood-retinal barrier junction molecules, retinal structure, and function were measured. JSH-23 significantly lowered basal glucose levels and intraocular pressure in Akita. It also mitigated vascular remodeling and microaneurysms significantly. Optical coherence tomography of untreated Akita showed thinning of retinal layers; however, treatment with JSH-23 could prevent it. Electroretinogram demonstrated that A- and B-waves in Akita were significantly smaller than in wild type mice, indicating that JSH-23 intervention prevented loss of retinal function. Protein levels and gene expression of key inflammatory mediators, such as NOD-like receptor family pyrin domain-containing 3, intercellular adhesion molecule-1, inducible nitric oxide synthase, and cyclooxygenase-2, were decreased after JSH-23 treatment. At the same time, connexin-43 and occludin were maintained. Vision-guided behavior also improved significantly. The results show that reducing inflammation could protect the diabetic retina and its vasculature. Findings appear to have broader implications in treating not only ocular conditions but also other vasculopathies.


Assuntos
Diabetes Mellitus Experimental/complicações , Inflamação/patologia , NF-kappa B/antagonistas & inibidores , Fenilenodiaminas/farmacologia , Doenças Retinianas/prevenção & controle , Doenças Vasculares/prevenção & controle , Animais , Apoptose , Glicemia/análise , Modelos Animais de Doenças , Eletrorretinografia , Humanos , Hiperglicemia/patologia , Leucócitos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação , NF-kappa B/metabolismo , Retina/diagnóstico por imagem , Retina/patologia , Doenças Retinianas/diagnóstico por imagem , Doenças Retinianas/etiologia , Doenças Retinianas/patologia , Vasos Retinianos/diagnóstico por imagem , Vasos Retinianos/patologia , Tomografia de Coerência Óptica , Doenças Vasculares/diagnóstico por imagem , Doenças Vasculares/etiologia , Doenças Vasculares/patologia
17.
Mol Cell Biochem ; 476(4): 1891-1895, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33483858

RESUMO

Corona virus disease-19 (covid-19) is caused by a coronavirus that is also known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and is generally characterized by fever, respiratory inflammation, and multi-organ failure in susceptible hosts. One of the first things during inflammation is the response by acute phase proteins coupled with coagulation. The angiotensinogen (a substrate for hypertension) is one such acute phase protein and goes on to explain an association of covid-19 with that of angiotensin-converting enzyme-2 (ACE2, a metallopeptidase). Therefore, it is advisable to administer, and test the efficacy of specific blocker(s) of angiotensinogen such as siRNAs or antibodies to covid-19 subjects. Covid-19 activates neutrophils, macrophages, but decreases T-helper cells activity. The metalloproteinases promote the activation of these inflammatory immune cells, therefore; we surmise that doxycycline (a metalloproteinase inhibitor, and a safer antibiotic) would benefit the covid-19 subjects. Along these lines, an anti-acid has also been suggested for mitigation of the covid-19 complications. Interestingly, there are three primary vegetables (celery, carrot, and long-squash) which are alkaline in their pH-range as compared to many others. Hence, treatment with fresh juice (without any preservative) from these vegies or the antioxidants derived from purple carrot and cabbage together with appropriate anti-coagulants may also help prevent or lessen the detrimental effects of the covid-19 pathological outcomes. These suggested remedies might be included in the list of putative interventions that are currently being investigated towards mitigating the multi-organ damage by Covid-19 during the ongoing pandemic.


Assuntos
Tratamento Farmacológico da COVID-19 , Insuficiência Cardíaca/tratamento farmacológico , Inflamação/tratamento farmacológico , RNA Interferente Pequeno/uso terapêutico , Enzima de Conversão de Angiotensina 2/antagonistas & inibidores , Enzima de Conversão de Angiotensina 2/genética , Angiotensinogênio/antagonistas & inibidores , Angiotensinogênio/genética , COVID-19/genética , COVID-19/fisiopatologia , COVID-19/virologia , Coração/efeitos dos fármacos , Coração/fisiopatologia , Coração/virologia , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/virologia , Humanos , Inflamação/complicações , Inflamação/genética , Inflamação/virologia , Neutrófilos/virologia , Pandemias , SARS-CoV-2/patogenicidade
18.
Can J Physiol Pharmacol ; 99(1): 115-123, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32721223

RESUMO

Hyperhomocysteinemia (HHcy) affects bone remodeling, since a destructive process in cortical alveolar bone has been linked to it; however, the mechanism remains at large. HHcy increases proinflammatory cytokines viz. TNF-α, IL-1b, IL-6, and IL-8 that leads to a cascade that negatively impacts methionine metabolism and homocysteine cycling. Further, chronic inflammation decreases vitamins B12, B6, and folic acid that are required for methionine homocysteine homeostasis. This study aims to investigate a HHcy mouse model (cystathionine ß-synthase deficient, CBS+/-) for studying the potential pathophysiological changes, if any, in the periodontium (gingiva, periodontal ligament, cement, and alveolar bone). We compared the periodontium side-by-side in the CBS+/- model with that of the wild-type (C57BL/6J) mice. Histology and histomorphometry of the mandibular bone along with gene expression analyses were carried out. Also, proangiogenic proteins and metalloproteinases were studied. To our knowledge, this research shows, for the first time, a direct connection between periodontal disease during CBS deficiency, thereby suggesting the existence of disease drivers during the hyperhomocysteinemic condition. Our findings offer opportunities to develop diagnostics/therapeutics for people who suffer from chronic metabolic disorders like HHcy.


Assuntos
Cistationina beta-Sintase/deficiência , Hiper-Homocisteinemia/complicações , Periodontite/imunologia , Periodonto/patologia , Animais , Cistationina beta-Sintase/genética , Modelos Animais de Doenças , Ácido Fólico , Homocisteína/sangue , Homocisteína/metabolismo , Humanos , Hiper-Homocisteinemia/sangue , Hiper-Homocisteinemia/imunologia , Hiper-Homocisteinemia/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Estresse Oxidativo/imunologia , Periodontite/patologia , Periodonto/imunologia
19.
Can J Physiol Pharmacol ; 99(2): 161-170, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32721225

RESUMO

Research demonstrates that senescence is associated with tissue and organ dysfunction, and the eye is no exception. Sequelae arising from aging have been well defined as distinct clinical entities and vision impairment has significant psychosocial consequences. Retina and adjacent tissues like retinal pigmented epithelium and choroid are the key structures that are required for visual perception. Any structural and functional changes in retinal layers and blood retinal barrier could lead to age-related macular degeneration, diabetic retinopathy, and glaucoma. Further, there are significant oxygen gradients in the eye that can lead to excessive reactive oxygen species, resulting in endoplasmic reticulum and mitochondrial stress response. These radicals are source of functional and morphological impairment in retinal pigmented epithelium and retinal ganglion cells. Therefore, ocular diseases could be summarized as disturbance in the redox homeostasis. Hyperhomocysteinemia is a risk factor and causes vascular occlusive disease of the retina. Interestingly, hydrogen sulfide (H2S) has been proven to be an effective antioxidant agent, and it can help treat diseases by alleviating stress and inflammation. Concurrent glutamate excitotoxicity, endoplasmic reticulum stress, and microglia activation are also linked to stress; thus, H2S may offer additional interventional strategy. A refined understanding of the aging eye along with H2S biology and pharmacology may help guide newer therapies for the eye.


Assuntos
Envelhecimento/fisiologia , Olho/efeitos dos fármacos , Sulfeto de Hidrogênio/farmacologia , Envelhecimento/efeitos dos fármacos , Animais , Humanos
20.
Medicina (Kaunas) ; 58(1)2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-35056324

RESUMO

Impaired folate-mediated one-carbon metabolism (FOCM) is associated with many pathologies and developmental abnormalities. FOCM is a metabolic network of interdependent biosynthetic pathways that is known to be compartmentalized in the cytoplasm, mitochondria and nucleus. Currently, the biochemical mechanisms and causal metabolic pathways responsible for the initiation and/or progression of folate-associated pathologies have yet to be fully established. This review specifically examines the role of impaired FOCM in type 2 diabetes mellitus, Alzheimer's disease and the emerging Long COVID/post-acute sequelae of SARS-CoV-2 (PASC). Importantly, elevated homocysteine may be considered a biomarker for impaired FOCM, which is known to result in increased oxidative-redox stress. Therefore, the incorporation of hyperhomocysteinemia will be discussed in relation to impaired FOCM in each of the previously listed clinical diseases. This review is intended to fill gaps in knowledge associated with these clinical diseases and impaired FOCM. Additionally, some of the therapeutics will be discussed at this early time point in studying impaired FOCM in each of the above clinical disease states. It is hoped that this review will allow the reader to better understand the role of FOCM in the development and treatment of clinical disease states that may be associated with impaired FOCM and how to restore a more normal functional role for FOCM through improved nutrition and/or restoring the essential water-soluble B vitamins through oral supplementation.


Assuntos
Doença de Alzheimer , COVID-19 , Diabetes Mellitus Tipo 2 , COVID-19/complicações , Carbono , Ácido Fólico , Humanos , SARS-CoV-2 , Síndrome de COVID-19 Pós-Aguda
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...