Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 2180, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35140283

RESUMO

Mosquito-borne infections like dengue, malaria, chikungunya, etc. are a nuisance and can cause profound discomfort to people. Due to the objectional side effects and toxicity associated with synthetic pyrethroids, N,N-diethyl-3-methylbenzamide (DEET), N,N-diethyl phenylacetamide (DEPA), and N,N-di ethyl benzamide (DEBA) based mosquito repellent products, we developed an essential oil (EO) based mosquito repellent cream (EO-MRC) using clove, citronella and lemongrass oil. Subsequently, a formulation characterization, bio-efficacy, and safety study of EO-MRC were carried out. Expression of Anti-OBP2A and TRPV1 proteins on mosquito head parts were studied by western blotting. In-silico screening was also conducted for the specific proteins. An FT-IR study confirmed the chemical compatibility of the EOs and excipients used in EO-MRC. The thermal behaviour of the best EOs and their mixture was characterized by thermogravimetric analysis (TGA). GC-MS examination revealed various chemical components present in EOs. Efficacy of EO-MRC was correlated with 12% N,N-diethyl benzamide (DEBA) based marketed cream (DBMC). Complete protection time (CPT) of EO-MRC was determined as 228 min. Cytotoxicity study on L-132 cell line confirmed the non-toxic nature of EO-MRC upon inhalation. Acute dermal irritation study, acute dermal dose toxicity study, and acute eye irritation study revealed the non-toxic nature of EO-MRC. Non-target toxicity study on Danio rerio confirmed EO-MRC as safer for aquatic non-target animals. A decrease in the concentration of acetylcholinesterase (AChE) was observed in transfluthrin (TNSF) exposed Wistar rats. While EO-MRC did not alter the AChE concentrations in the exposed animals. Results from western blotting confirmed that Anti-OBP2A and TRPV1 proteins were inhibited in TNSF exposed mosquitoes. Mosquitoes exposed to EO-MRC showed a similar expression pattern for Anti-OBP2A and TRPV1 as the control group. In silico study revealed eight identified compounds of the EOs play significant roles in the overall repellency property of the developed product. The study emphasizes the mosquito repellent activity of EO-MRC, which could be an effective, eco-friendly, and safer alternative to the existing synthetic repellents for personal protection against mosquitoes during field conditions.


Assuntos
Repelentes de Insetos/química , Repelentes de Insetos/farmacologia , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Creme para a Pele/química , Creme para a Pele/farmacologia , Acetilcolinesterase/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Culicidae , Cymbopogon/química , Composição de Medicamentos , Olho/efeitos dos fármacos , Feminino , Humanos , Repelentes de Insetos/efeitos adversos , Masculino , Simulação de Acoplamento Molecular , Óleos Voláteis/efeitos adversos , Óleos de Plantas/química , Coelhos , Ratos Wistar , Pele/efeitos dos fármacos , Creme para a Pele/efeitos adversos , Testes de Irritação da Pele , Syzygium/química , Terpenos/química , Peixe-Zebra
2.
Acta Trop ; 210: 105620, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32649995

RESUMO

Housefly, Musca (M) domestica L. (Diptera: Muscidae) is a pervasive insect that transmits a variety of pathogens to humans and livestock. Although numerous synthetic pesticides are available to combat houseflies, their ecological and toxicological concerns have led to the exploration of natural products as safer alternatives. The present work was designed to develop an essential oil based controlled-release evaporating tablet (EO-CRT) and investigate its repellency against M. domestica. This study assesses the toxicological impacts of the EO-CRT following its sub-chronic inhalation exposure. Briefly, repellent activity of fourteen essential oils viz. lemon grass, bergamot, mentha, basil, camphor, lavender, clove, patchouli, rosemary, cinnamon, eucalyptus, citronella, jasmine and wild turmeric against M. domestica were screened using the 'Y'-tube olfactometer. The synergistic activity of the best four oils, under preliminary screening, were further evaluated by double and triple blending. The best combination of three oils were finalized for optimization with 17-run, 3-factor, 3-level Box-Behnken design. This was then employed to construct polynomial models and predict the best optimized formulation EO-CRT. EO-CRT was characterized by Differential Scanning Calorimetry (DSC) and Gas Chromatography-Mass Spectroscopy (GC-MS). The efficacy of the EO-CRT against M. domestica was assessed by attraction and repellent assay. Chest X-ray, histopathology and scanning electron microscopy of the exposed lung was performed to study EO-CRT's sub-chronic toxicity on Wistar rats. The EO-CRT showed slow release up to a period of 10 days at room temperature, exhibited 100% repellency (%Error=1.237) against M. domestica and was found to possess all the characteristics of an ideal formulation. Sub-chronic toxicity study further revealed the non-toxic nature of the EO-CRT. Thus, our study provides an assurance that the formulated EO-CRT could be effective not only in repelling the nuisance pest, M. domestica, in human dwellings, but also in minimizing the mechanical transmission of pathogens by it.


Assuntos
Moscas Domésticas/efeitos dos fármacos , Repelentes de Insetos/farmacologia , Óleos Voláteis/farmacologia , Animais , Preparações de Ação Retardada/farmacologia , Feminino , Masculino , Óleos Voláteis/toxicidade , Ratos , Ratos Wistar , Comprimidos/farmacologia
3.
Acta Trop ; 210: 105573, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32505595

RESUMO

Mosquitoes (Diptera; Culicidae) are a biting nuisance and are of economic and health importance, especially for people living in tropical countries like India. Given the environmental concerns and health hazards of synthetic insecticides, development of natural products for the control of mosquito and mosquito-borne diseases are needed. In view of this, an essential oil based novel liquid vaporizer formulation with citronella and eucalyptus oils has been developed using a computer aided Artificial Neural Network and Particle Swarm Optimization (ANN-PSO) algorithm approach, aiming to predict the best optimized formulation (OF). Following the development, OF was characterized by Fourier Transform-Infra Red (FT-IR) spectroscopy and gas chromatography-mass spectroscopy (GC-MS). The efficacy of the OF was assessed against two major mosquito vectors viz. Anopheles stephensi and Aedes albopictus using a Peet-Grady chamber. Finally, toxicological impacts of the OF following its inhalation were investigated as per the Organization for Economic Co-operation and Development (OECD) guidelines. The results revealed all the ideal characteristics of the OF which were found to provide a slow release of up to 450 h at room temperature. Most importantly, the OF, exhibited 50% mosquito knock down (KT50) within 11.49±1.34 and 14.15±2.15 min against An. stephensi and Ae. albopictus respectively. Toxicity assessment showed a non toxic nature of the OF following inhalation. Thus the present development would be beneficial for controlling both An. stephensi and Ae. albopictus without any associated health hazards.


Assuntos
Cymbopogon , Eucalyptus , Inseticidas/administração & dosagem , Controle de Mosquitos/métodos , Nebulizadores e Vaporizadores , Óleos Voláteis/administração & dosagem , Aedes , Animais , Anopheles
4.
RSC Adv ; 10(16): 9356-9368, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35497225

RESUMO

Background: Vector-borne diseases such as malaria, dengue, yellow fever, encephalitis and filariasis are considered serious human health concerns in the field of medical entomology. Controlling the population of mosquito vectors is one of the best strategies for combating such vector-borne diseases. However, the use of synthetic insecticides for longer periods of time increases mosquito resistance to the insecticides. Recently, the search for new environmentally friendly and efficient insecticides has attracted major attention globally. With the evolution of material sciences, researchers have reported the effective control of such diseases using various sustainable resources. The present investigation demonstrates a potent on-site biolarvicidal agent against different mosquito vectors such as Aedes albopictus, Anopheles stephensi and Culex quinquefasciatus. Methods: Stable and photo-induced colloidal silver nanoparticles were generated via the surface functionalization of the root extract of Cyprus rotundas. Characterizations of the nanoparticles were performed using assorted techniques, such as UV-visible spectroscopy, FTIR spectroscopy, DLS and HRTEM. The bioefficacy of the synthesized nanoparticles was investigated against different species of mosquito larvae through the evaluation of their life history trait studies, fecundity and hatchability rate of the treated larvae. Histopathological and polymerase chain reaction-random amplified polymorphic DNA (RAPD) analyses of the treated larvae were also examined to establish the cellular damage. Results: The synthesized nanoparticles showed remarkable larvicidal activity against mosquito larvae in a very low concentration range (0.001-1.00) mg L-1. The histopathological study confirmed that the present nanoparticles could easily enter the cuticle membrane of mosquito larvae and subsequently obliterate their complete intestinal system. Furthermore, RAPD analysis of the treated larvae could assess the damage of the DNA banding pattern. Conclusion: The present work demonstrates a potent biolarvicidal agent using sustainable bioresources of the aqueous Cyprus rotundas root extract. The results showed that the synthesized nanoparticles were stable under different physiological conditions such as temperature and photo-induced oxidation. The effectiveness of these materials against mosquito larvae was quantified at very low dose concentrations. The present biolarvicidal agent can be considered as an environmentally benign material to control the mosquito vectors with an immense potential for on-site field applications.

5.
Acta Trop ; 174: 56-63, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28666890

RESUMO

Growing concern on the application of synthetic mosquito repellents in the recent years has instigated the identification and development of better alternatives to control different mosquito-borne diseases. In view of above, present investigation evaluates the repellent activity of ethyl anthranilate (EA), a non-toxic, FDA approved volatile food additive against three known mosquito vectors namely, Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus under laboratory conditions following standard protocols. Three concentration levels (2%, 5% and 10% w/v) of EA were tested against all the three selected mosquito species employing K & D module and arm-in-cage method to determine the effective dose (ED50) and complete protection time (CPT), respectively. The repellent activity of EA was further investigated by modified arm-in-cage method to determine the protection over extended spatial ranges against all mosquito species. All behavioural situations were compared with the well-documented repellent N,N-diethylphenyl acetamide (DEPA) as a positive control. The findings demonstrated that EA exhibited significant repellent activity against all the three mosquitoes species. The ED50 values of EA, against Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus were found to be 0.96%, 5.4% and 3.6% w/v, respectively. At the concentration of 10% w/v, it provided CPTs of 60, 60 and 30min, respectively, against Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus mosquitoes. Again in spatial repellency evaluation, EA was found to be extremely effective in repelling all the three tested species of mosquitoes. Ethyl anthranilate provided comparable results to standard repellent DEPA during the study. Results have concluded that the currently evaluated chemical, EA has potential repellent activity against some well established mosquito vectors. The study emphasizes that repellent activity of EA could be exploited for developing effective, eco-friendly, acceptable and safer alternative to the existing harmful repellents for personal protection against different hematophagous mosquito species.


Assuntos
Aedes/efeitos dos fármacos , Anopheles/efeitos dos fármacos , Culex/efeitos dos fármacos , Repelentes de Insetos/farmacologia , Mosquitos Vetores/efeitos dos fármacos , ortoaminobenzoatos/farmacologia , Animais , Proteínas do Tecido Nervoso/efeitos dos fármacos , Proteínas de Xenopus/efeitos dos fármacos
6.
J Vector Borne Dis ; 54(2): 151-156, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28748836

RESUMO

BACKGROUND & OBJECTIVES: Anopheles stephensi is one of the most important urban malaria vectors in India and contribute about 12% of total malaria cases. An. stephensi has three ecological variants; type, intermediate and mysorensis that can be differentiated on the basis of differences in number of ridges on egg float and on the basis of spiracular indices. Because of its anthropophilic nature the 'type' form is an efficient malaria vector. In the present study, the egg surface morphometry and morphology of An. stephensi 'type' form was studied and detail distinguish- ing characters were recorded for its correct identification. METHODS: Eggs of An. stephensi 'type' form were studied by scanning electron microscopy (SEM) after sputter- coating with gold. In total 23 egg characters were analysed morphologically and morphometrically, which included egg attributes, deck attributes, ventral tubercles, micropyle and float attributes. RESULTS: The dorsal surface of the egg of 'type' form was curved while the ventral surface was concave and both anterior and posterior ends were blunt. The average length and width of egg was 473.94 + 11.18 and 154.69 + 2.66 µm respectively. The number of float ribs observed was 20.33 ± 0.33. The maximum length of float was found to be 246.57 + 15.27 µm, whereas maximum width was 87.16 + 3.83 µm. INTERPRETATION & CONCLUSION: The present study has generated some important data which is specific to An. Stephensi 'type' form and provided significant morphological and morphometric standards for its correct identification. This information could be useful in differentiation of An. stephensi 'type' form from other ecological forms of the same species as well as other species of Anopheles.


Assuntos
Anopheles/ultraestrutura , Óvulo/ultraestrutura , Animais , Biometria , Índia , Microscopia Eletrônica de Varredura
7.
Parasit Vectors ; 9: 202, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-27075571

RESUMO

BACKGROUND: The malaria vector Anopheles culicifacies (sensu lato) is an important malaria vector in Southeast Asia which comprises of five sibling species namely A, B, C, D and E. However, only a few forms have been identified as malaria vectors in various endemic countries. Currently, for the first time egg morphometry and morphology has been used to differentiate the three known vector sibling species of Anopheles culicifacies collected from malaria endemic Madhya Pradesh state of central India. METHODS: The adult An. culicifacies (s.l.) was collected from five districts using standard mosquito collection methods. Adult female mosquitoes were allowed to lay eggs individually. The emerged mosquitoes were identified using allele specific polymerase chain reaction (AS-PCR) to sibling species. Eggs of sibling species A, D and E were studied using scanning electron microscopy (SEM) for morphometric and morphological characteristics. RESULTS: Currently AS-PCR identified four known sibling species (B, C, D and E) of An. culicifacies in the study area. The surface morphology and morphometric attributes of the sibling species A, D and E eggs considerably differed from each other. An. culicifacies E had a narrow deck as compared to A and D, while An. culicifacies A had a bigger micropyle with 6-7 sectors as compared to D and E that had 6 sectors. An. culicifacies D had the smallest float (the structure present on sides of the egg surface in which air is filled that help in floating) and the number of ribs was also fewer than for An. culicifacies A and E. CONCLUSIONS: The present study provides the first evidence that in addition to PCR assay, sibling species of An. culicifacies can also be differentiated using morphological and morphometric characteristics of the egg stage. The results also advocate that the sibling species of An. culicifacies are morphologically dissimilar and can be resolved using advanced microscopy.


Assuntos
Anopheles/classificação , Anopheles/crescimento & desenvolvimento , Insetos Vetores/classificação , Animais , Anopheles/genética , Anopheles/ultraestrutura , Feminino , Humanos , Índia/epidemiologia , Insetos Vetores/genética , Insetos Vetores/ultraestrutura , Malária/epidemiologia , Malária/transmissão , Masculino , Microscopia Eletrônica de Varredura , Óvulo/classificação , Óvulo/ultraestrutura
8.
PLoS One ; 11(3): e0151786, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27010649

RESUMO

During the recent past, development of DDT resistance and reduction to pyrethroid susceptibility among the malaria vectors has posed a serious challenge in many Southeast Asian countries including India. Current study presents the insecticide susceptibility and knock-down data of field collected Anopheles annularis sensu lato and An. vagus mosquito species from endemic areas of Assam in northeast India. Anopheles annularis s.l. and An. vagus adult females were collected from four randomly selected sentinel sites in Orang primary health centre (OPHC) and Balipara primary health centre (BPHC) areas, and used for testing susceptibility to DDT, malathion, deltamethrin and lambda-cyhalothrin. After insecticide susceptibility tests, mosquitoes were subjected to VectorTest™ assay kits to detect the presence of malaria sporozoite in the mosquitoes. An. annularis s.l. was completely susceptible to deltamethrin, lambda-cyhalothrin and malathion in both the study areas. An. vagus was highly susceptible to deltamethrin in both the areas, but exhibited reduced susceptibility to lambda-cyhalothrin in BPHC. Both the species were resistant to DDT and showed very high KDT50 and KDT99 values for DDT. Probit model used to calculate the KDT50 and KDT99 values did not display normal distribution of percent knock-down with time for malathion in both the mosquito species in OPHC (p<0.05) and An. vagus in BPHC (χ2 = 25.3; p = 0.0), and also for deltamethrin to An. vagus in BPHC area (χ2 = 15.4; p = 0.004). Minimum infection rate (MIR) of Plasmodium sporozoite for An. vagus was 0.56 in OPHC and 0.13 in BPHC, while for An. annularis MIR was found to be 0.22 in OPHC. Resistance management strategies should be identified to delay the expansion of resistance. Testing of field caught Anopheles vectors from different endemic areas for the presence of malaria sporozoite may be useful to ensure their role in malaria transmission.


Assuntos
Anopheles/efeitos dos fármacos , Controle de Insetos/métodos , Insetos Vetores/efeitos dos fármacos , Inseticidas/farmacologia , Malária/prevenção & controle , Plasmodium/isolamento & purificação , Animais , Anopheles/parasitologia , DDT/farmacologia , Feminino , Humanos , Índia/epidemiologia , Insetos Vetores/parasitologia , Resistência a Inseticidas , Malária/epidemiologia , Malária/transmissão , Malation/farmacologia , Nitrilas/farmacologia , Piretrinas/farmacologia
9.
Parasitol Res ; 113(5): 1739-47, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24595642

RESUMO

Personnel protection is one of the methods for protection from bites of mosquitoes and other arthropod vectors transmitting many dreadful diseases. Insect repellents and other plant products are normally used to ward off mosquitoes. Application of synthetic pyrethroid permethrin on cloth is adopted for repelling arthropod vectors in many countries for military and civil purposes. In the present study, attempt has been made to impregnate permethrin in the army uniform cloth and to evaluate for its knockdown and repellency against unfed female Aedes aegypti mosquitoes in laboratory condition. WHO protocols were adopted for impregnation of permethrin on cloth and evaluation for its knockdown and repellency after different cycles of washing. Results showed that 93.33% of mosquitoes were knocked down within 1 h after the first washing while its efficacy reduced gradually till the fifty-fifth washing. Landing of mosquitoes on the permethrin-treated cloth was found to increase with respect to number of washings as compared to the untreated cloth. Within 24 h, 100% mortality of all the mosquitoes exposed to permethrin-impregnated cloth was observed. SEM-EDX studies on the texture of untreated cloth and permethrin-treated cloth after different cycles of washing also revealed presence of permethrin on treated cloth.


Assuntos
Aedes/efeitos dos fármacos , Repelentes de Insetos/farmacologia , Lavanderia , Permetrina/farmacologia , Roupa de Proteção , Animais , Feminino , Repelentes de Insetos/administração & dosagem , Controle de Mosquitos , Permetrina/administração & dosagem
10.
J Arthropod Borne Dis ; 8(2): 174-85, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26114131

RESUMO

BACKGROUND: Mosquitoes are well known as vectors of several disease causing pathogens. The extensive use of synthetic insecticides in the mosquito control strategies resulted to the development of pesticide resistance and fostered environmental deterioration. Hence in recent years plants become alternative source of mosquito control agents. The present study assessed the larvicidal and oviposition altering activity of six different plants species-Alstonia scholaris, Callistemon viminalis, Hyptis suaveolens, Malvastrum coromandelianum, Prosopis juliflora, Vernonia cinerea against Aedes albopictus mosquito in laboratory. METHODS: Leaf extracts of all the six plants species in five different solvents of various polarities were used in the range of 20-400ppm for larval bioassay and 50,100 and 200ppm for cage bioassay (for the study of oviposition behavior) against Ae. albopictus. The larval mortality data were recorded after 24 h and subjected to Probit analysis to determine the lethal concentrations (LC50), while OAI (Oviposition activity index) was calculated for oviposition altering activity of the plant extracts. RESULTS: Vernonia cinerea extract in acetone and C. viminalis extract in isopropanol were highly effective against Aedes albopictus larvae with LC50 value 64.57, 71.34ppm respectively. Acetone extract of P. juliflora found to be strong oviposition-deterrent which inhibited >2 fold egg laying (OAI-0.466) at 100ppm. CONCLUSION: Vernonia cinerea and C. viminallis leaf extracts have the potential to be used as larvicide and P. juliflora as an oviposition-deterrent for the control of Ae. albopictus mosquito.

11.
J Arthropod Borne Dis ; 8(2): 186-96, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26114132

RESUMO

BACKGROUND: Anopheles culicifacies is an important vector of malaria in Southeast Asia, contributing to almost 70% of malaria cases in India. It exists as a complex of five morphologically indistinguishable species A, B, C, D and E with varied geographical distribution patterns. In India, 8% of the total population of Madhya Pradesh (Central India) contributes about 30% of total malaria cases, 60% of total falciparum cases and 50% of malaria deaths. An. culicifacies is the major malaria vector in this state. Vector control mainly relies on the proper identification and distribution of vector species exists in a particular area. The present study was carried out to identify the distribution of An. culicifacies sibling species in certain endemic district of Central India, Madhya Pradesh. METHODS: The An. culicifacies mosquitoes collected from the study districts were identified morphologically. The genomic DNA was isolated from the mosquitoes and subjected to Allele specific PCR targeting D3 domain of 28S ribosomal DNA. RESULTS: The mean prevalence of An. culicifacies during the study period was in the range of 8-120 per man per hour (PMH). From the study areas species B was identified from Jabalpur, Chindwara and Hoshangabad, Species C from Hoshangabad only, Species D from Narsinghpur and Khandwa and sibling species E from Mandla, Chindwara and Hoshangabad respectively. CONCLUSION: This is the first report to detect species E from Madhya Pradesh region which necessitate for reconsideration of species distribution of each An. culicifacies sibling species that would enable to develop required vector control strategies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...