Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 20314, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37985890

RESUMO

The skeleton forms from multipotent human mesenchymal stem cells (hMSCs) competent to commit to specific lineages. Long noncoding RNAs (lncRNAs) have been identified as key epigenetic regulators of tissue development. However, regulation of osteogenesis by lncRNAs as mediators of commitment to the bone phenotype is largely unexplored. We focused on LINC01638, which is highly expressed in hMSCs and has been studied in cancers, but not in regulating osteogenesis. We demonstrated that LINC01638 promotes initiation of the osteoblast phenotype. Our findings reveal that LINC01638 is present at low levels during the induction of osteoblast differentiation. CRISPRi knockdown of LINC01638 in MSCs prevents osteogenesis and alkaline phosphatase expression, inhibiting osteoblast differentiation. This resulted in decreased MSC growth rate, accompanied by double-strand breaks, DNA damage, and cell senescence. Transcriptome profiling of control and LINC01638-depleted hMSCs identified > 2000 differentially expressed mRNAs related to cell cycle, cell division, spindle formation, DNA repair, and osteogenesis. Using ChIRP-qPCR, molecular mechanisms of chromatin interactions revealed the LINC01638 locus (Chr 22) includes many lncRNAs and bone-related genes. These novel findings identify the obligatory role for LINC01638 to sustain MSC pluripotency regulating osteoblast commitment and growth, as well as for physiological remodeling of bone tissue.


Assuntos
Células-Tronco Mesenquimais , RNA Longo não Codificante , Humanos , Osteogênese/genética , Autorrenovação Celular , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Diferenciação Celular/genética
2.
Res Sq ; 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37693373

RESUMO

The skeleton forms from multipotent human mesenchymal stem cells (hMSCs) competent to commit to specific lineages. Long noncoding RNAs (lncRNAs) have been identified as key epigenetic regulators of tissue development. However, regulation of osteogenesis by lncRNAs as mediators of commitment to the bone phenotype is largely unexplored. We focused on LINC01638, which is highly expressed in hMSCs and has been studied in cancers, but not in regulating osteogenesis. We demonstrated that LINC01638 promotes initiation of the osteoblast phenotype. Our findings reveal that LINC01638 is present at low levels during the induction of osteoblast differentiation. CRISPRi knockdown of LINC01638 in MSCs prevents osteogenesis and alkaline phosphatase expression, inhibiting osteoblast differentiation. This resulted in decreased MSC cell growth rate, accompanied by double-strand breaks, DNA damage, and cell senescence. Transcriptome profiling of control and LINC01638-depleted hMSCs identified > 2,000 differentially expressed mRNAs related to cell cycle, cell division, spindle formation, DNA repair, and osteogenesis. Using ChIRP-qPCR, molecular mechanisms of chromatin interactions revealed the LINC01638 locus (Chr 22) includes many lncRNAs and bone-related genes. These novel findings identify the obligatory role for LINC01638 to sustain MSC pluripotency regulating osteoblast commitment and growth, as well as for physiological remodeling of bone tissue.

3.
PLoS One ; 17(7): e0271725, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35862394

RESUMO

Selective estrogen receptor modulators (SERMs), including the SERM/SERD bazedoxifene (BZA), are used to treat postmenopausal osteoporosis and may reduce breast cancer (BCa) risk. One of the most persistent unresolved questions regarding menopausal hormone therapy is compromised control of proliferation and phenotype because of short- or long-term administration of mixed-function estrogen receptor (ER) ligands. To gain insight into epigenetic effectors of the transcriptomes of hormone and BZA-treated BCa cells, we evaluated a panel of histone modifications. The impact of short-term hormone treatment and BZA on gene expression and genome-wide epigenetic profiles was examined in ERαneg mammary epithelial cells (MCF10A) and ERα+ luminal breast cancer cells (MCF7). We tested individual components and combinations of 17ß-estradiol (E2), estrogen compounds (EC10) and BZA. RNA-seq for gene expression and ChIP-seq for active (H3K4me3, H3K4ac, H3K27ac) and repressive (H3K27me3) histone modifications were performed. Our results show that the combination of BZA with E2 or EC10 reduces estrogen-mediated patterns of histone modifications and gene expression in MCF-7ERα+ cells. In contrast, BZA has minimal effects on these parameters in MCF10A mammary epithelial cells. BZA-induced changes in histone modifications in MCF7 cells are characterized by altered H3K4ac patterns, with changes at distal enhancers of ERα-target genes and at promoters of non-ERα bound proliferation-related genes. Notably, the ERα target gene GREB1 is the most sensitive to BZA treatment. Our findings provide direct mechanistic-based evidence that BZA induces epigenetic changes in E2 and EC10 mediated control of ERα regulatory programs to target distinctive proliferation gene pathways that restrain the potential for breast cancer development.


Assuntos
Neoplasias da Mama , Estrogênios Conjugados (USP) , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Epigênese Genética , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Estrogênios/farmacologia , Estrogênios Conjugados (USP)/farmacologia , Feminino , Humanos , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Transcriptoma
4.
Sci Rep ; 12(1): 7770, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35546168

RESUMO

Bone formation requires osteogenic differentiation of multipotent mesenchymal stromal cells (MSCs) and lineage progression of committed osteoblast precursors. Osteogenic phenotype commitment is epigenetically controlled by genomic (chromatin) and non-genomic (non-coding RNA) mechanisms. Control of osteogenesis by long non-coding RNAs remains a largely unexplored molecular frontier. Here, we performed comprehensive transcriptome analysis at early stages of osteogenic cell fate determination in human MSCs, focusing on expression of lncRNAs. We identified a chromatin-bound lncRNA (MIR181A1HG) that is highly expressed in self-renewing MSCs. MIR181A1HG is down-regulated when MSCs become osteogenic lineage committed and is retained during adipogenic differentiation, suggesting lineage-related molecular functions. Consistent with a key role in human MSC proliferation and survival, we demonstrate that knockdown of MIR181A1HG in the absence of osteogenic stimuli impedes cell cycle progression. Loss of MIR181A1HG enhances differentiation into osteo-chondroprogenitors that produce multiple extracellular matrix proteins. RNA-seq analysis shows that loss of chromatin-bound MIR181A1HG alters expression and BMP2 responsiveness of skeletal gene networks (e.g., SOX5 and DLX5). We propose that MIR181A1HG is a novel epigenetic regulator of early stages of mesenchymal lineage commitment towards osteo-chondroprogenitors. This discovery permits consideration of MIR181A1HG and its associated regulatory pathways as targets for promoting new bone formation in skeletal disorders.


Assuntos
Osteogênese , RNA Longo não Codificante , Diferenciação Celular/genética , Linhagem da Célula/genética , Cromatina/genética , Cromatina/metabolismo , Epigênese Genética , Osteoblastos/metabolismo , Osteogênese/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
5.
Biomater Adv ; 134: 112548, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35012895

RESUMO

The bone remodeling process is crucial for titanium (Ti) osseointegration and involves the crosstalk between osteoclasts and osteoblasts. Considering the high osteogenic potential of Ti with nanotopography (Ti Nano) and that osteoclasts inhibit osteoblast differentiation, we hypothesized that nanotopography attenuate the osteoclast-induced disruption of osteoblast differentiation. Osteoblasts were co-cultured with osteoclasts on Ti Nano and Ti Control and non-co-cultured osteoblasts were used as control. Gene expression analysis using RNAseq showed that osteoclasts downregulated the expression of osteoblast marker genes and upregulated genes related to histone modification and chromatin organization in osteoblasts grown on both Ti surfaces. Osteoclasts also inhibited the mRNA and protein expression of osteoblast markers, and such effect was attenuated by Ti Nano. Also, osteoclasts increased the protein expression of H3K9me2, H3K27me3 and EZH2 in osteoblasts grown on both Ti surfaces. ChIP assay revealed that osteoclasts increased accumulation of H3K27me3 that represses the promoter regions of Runx2 and Alpl in osteoblasts grown on Ti Control, which was reduced by Ti Nano. In conclusion, these data show that despite osteoclast inhibition of osteoblasts grown on both Ti Control and Ti Nano, the nanotopography attenuates the osteoclast-induced disruption of osteoblast differentiation by preventing the increase of H3K27me3 accumulation that represses the promoter regions of some key osteoblast marker genes. These findings highlight the epigenetic mechanisms triggered by nanotopography to protect osteoblasts from the deleterious effects of osteoclasts, which modulate the process of bone remodeling and may benefit the osseointegration of Ti implants.


Assuntos
Osteoclastos , Titânio , Histonas/metabolismo , Metilação , Osteoblastos , Osteoclastos/metabolismo , Propriedades de Superfície , Titânio/farmacologia
6.
Gene Ther ; 28(12): 748-759, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33686254

RESUMO

Cell therapy is a valuable strategy for the replacement of bone grafts and repair bone defects, and mesenchymal stem cells (MSCs) are the most frequently used cells. This study was designed to genetically edit MSCs to overexpress bone morphogenetic protein 9 (BMP-9) using Clustered Regularly Interspaced Short Palindromic Repeats/associated nuclease Cas9 (CRISPR-Cas9) technique to generate iMSCs-VPRBMP-9+, followed by in vitro evaluation of osteogenic potential and in vivo enhancement of bone formation in rat calvaria defects. Overexpression of BMP-9 was confirmed by its gene expression and protein expression, as well as its targets Hey-1, Bmpr1a, and Bmpr1b, Dlx-5, and Runx2 and  protein expression of SMAD1/5/8 and pSMAD1/5/8. iMSCs-VPRBMP-9+ displayed significant changes in the expression of a panel of genes involved in TGF-ß/BMP signaling pathway. As expected, overexpression of BMP-9 increased the osteogenic potential of MSCs indicated by increased gene expression of osteoblastic markers Runx2, Sp7, Alp, and Oc, higher ALP activity, and matrix mineralization. Rat calvarial bone defects treated with injection of iMSCs-VPRBMP-9+ exhibited increased bone formation and bone mineral density when compared with iMSCs-VPR- and phosphate buffered saline (PBS)-injected defects. This is the first study to confirm that CRISPR-edited MSCs overexpressing BMP-9 effectively enhance bone formation, providing novel options for exploring the capability of genetically edited cells to repair bone defects.


Assuntos
Fator 2 de Diferenciação de Crescimento , Células-Tronco Mesenquimais , Osteogênese , Animais , Sistemas CRISPR-Cas , Diferenciação Celular , Células Cultivadas , Fator 2 de Diferenciação de Crescimento/genética , Células-Tronco Mesenquimais/citologia , Osteogênese/genética , Ratos
7.
J Cell Physiol ; 235(10): 7261-7272, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32180230

RESUMO

Breast cancer stem cells (BCSCs) are competent to initiate tumor formation and growth and refractory to conventional therapies. Consequently BCSCs are implicated in tumor recurrence. Many signaling cascades associated with BCSCs are critical for epithelial-to-mesenchymal transition (EMT). We developed a model system to mechanistically examine BCSCs in basal-like breast cancer using MCF10AT1 FACS sorted for CD24 (negative/low in BCSCs) and CD44 (positive/high in BCSCs). Ingenuity Pathway Analysis comparing RNA-seq on the CD24-/low versus CD24+/high MCF10AT1 indicates that the top activated upstream regulators include TWIST1, TGFß1, OCT4, and other factors known to be increased in BCSCs and during EMT. The top inhibited upstream regulators include ESR1, TP63, and FAS. Consistent with our results, many genes previously demonstrated to be regulated by RUNX factors are altered in BCSCs. The RUNX2 interaction network is the top significant pathway altered between CD24-/low and CD24+/high MCF10AT1. RUNX1 is higher in expression at the RNA level than RUNX2. RUNX3 is not expressed. While, human-specific quantitative polymerase chain reaction primers demonstrate that RUNX1 and CDH1 decrease in human MCF10CA1a cells that have grown tumors within the murine mammary fat pad microenvironment, RUNX2 and VIM increase. Treatment with an inhibitor of RUNX binding to CBFß for 5 days followed by a 7-day recovery period results in EMT suggesting that loss of RUNX1, rather than increase in RUNX2, is a driver of EMT in early stage breast cancer. Increased understanding of RUNX regulation on BCSCs and EMT will provide novel insight into therapeutic strategies to prevent recurrence.


Assuntos
Neoplasias da Mama/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Células-Tronco Neoplásicas/metabolismo , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Subunidade alfa 1 de Fator de Ligação ao Core/antagonistas & inibidores , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/antagonistas & inibidores , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Xenoenxertos , Humanos , Camundongos , Camundongos SCID , Células-Tronco Neoplásicas/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Microambiente Tumoral/genética
8.
J Biomed Mater Res A ; 107(6): 1303-1313, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30707485

RESUMO

The major role of integrins is to mediate cell adhesion but some of them are involved in the osteoblasts-titanium (Ti) interactions. In this study, we investigated the participation of integrins in osteoblast differentiation induced by Ti with nanotopography (Ti-Nano) and with microtopography (Ti-Micro). By using a PCR array, we observed that, compared with Ti-Micro, Ti-Nano upregulated the expression of five integrins in mesenchymal stem cells, including integrin ß3, which increases osteoblast differentiation. Silencing integrin ß3, using CRISPR-Cas9, in MC3T3-E1 cells significantly reduced the osteoblast differentiation induced by Ti-Nano in contrast to the effect on T-Micro. Concomitantly, integrin ß3 silencing downregulated the expression of integrin αv, the parent chain that combines with other integrins and several components of the Wnt/ß-catenin and BMP/Smad signaling pathways, all involved in osteoblast differentiation, only in cells cultured on Ti-Nano. Taken together, our results showed the key role of integrin ß3 in the osteogenic potential of Ti-Nano but not of Ti-Micro. Additionally, we propose a novel mechanism to explain the higher osteoblast differentiation induced by Ti-Nano that involves an intricate regulatory network triggered by integrin ß3 upregulation, which activates the Wnt and BMP signal transductions. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 1303-1313, 2019.


Assuntos
Diferenciação Celular , Integrina beta3/metabolismo , Nanoestruturas/química , Osteoblastos/metabolismo , Titânio/química , Via de Sinalização Wnt , Animais , Linhagem Celular , Masculino , Camundongos , Osteoblastos/citologia , Ratos , Ratos Wistar
9.
J Cell Physiol ; 234(6): 8597-8609, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30515788

RESUMO

The RUNX1 transcription factor has recently been shown to be obligatory for normal development. RUNX1 controls the expression of genes essential for proper development in many cell lineages and tissues including blood, bone, cartilage, hair follicles, and mammary glands. Compromised RUNX1 regulation is associated with many cancers. In this review, we highlight evidence for RUNX1 control in both invertebrate and mammalian development and recent novel findings of perturbed RUNX1 control in breast cancer that has implications for other solid tumors. As RUNX1 is essential for definitive hematopoiesis, RUNX1 mutations in hematopoietic lineage cells have been implicated in the etiology of several leukemias. Studies of solid tumors have revealed a context-dependent function for RUNX1 either as an oncogene or a tumor suppressor. These RUNX1 functions have been reported for breast, prostate, lung, and skin cancers that are related to cancer subtypes and different stages of tumor development. Growing evidence suggests that RUNX1 suppresses aggressiveness in most breast cancer subtypes particularly in the early stage of tumorigenesis. Several studies have identified RUNX1 suppression of the breast cancer epithelial-to-mesenchymal transition. Most recently, RUNX1 repression of cancer stem cells and tumorsphere formation was reported for breast cancer. It is anticipated that these new discoveries of the context-dependent diversity of RUNX1 functions will lead to innovative therapeutic strategies for the intervention of cancer and other abnormalities of normal tissues.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Neoplasias/metabolismo , Animais , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Mutação , Neoplasias/genética , Neoplasias/patologia , Prognóstico , Transdução de Sinais
10.
Connect Tissue Res ; 59(sup1): 35-41, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29745821

RESUMO

Long noncoding RNAs (lncRNAs) have recently emerged as novel regulators of lineage commitment, differentiation, development, viability, and disease progression. Few studies have examined their role in osteogenesis; however, given their critical and wide-ranging roles in other tissues, lncRNAs are most likely vital regulators of osteogenesis. In this study, we extensively characterized lncRNA expression in mesenchymal cells during commitment and differentiation to the osteoblast lineage using a whole transcriptome sequencing approach (RNA-Seq). Using mouse primary mesenchymal stromal cells (mMSC), we identified 1438 annotated lncRNAs expressed during MSC differentiation, 462 of which are differentially expressed. We performed guilt-by-association analysis using lncRNA and mRNA expression profiles to identify lncRNAs influencing MSC commitment and differentiation. These findings open novel dimensions for exploring lncRNAs in regulating normal bone formation and in skeletal disorders.


Assuntos
Diferenciação Celular/fisiologia , Epigênese Genética/fisiologia , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/metabolismo , Osteogênese/fisiologia , RNA Longo não Codificante/metabolismo , Animais , Humanos , Células-Tronco Mesenquimais/citologia , Camundongos , Osteoblastos/citologia
11.
Adv Biol Regul ; 69: 1-10, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29759441

RESUMO

Nuclear organization is functionally linked to genetic and epigenetic regulation of gene expression for biological control and is modified in cancer. Nuclear organization supports cell growth and phenotypic properties of normal and cancer cells by facilitating physiologically responsive interactions of chromosomes, genes and regulatory complexes at dynamic three-dimensional microenvironments. We will review nuclear structure/function relationships that include: 1. Epigenetic bookmarking of genes by phenotypic transcription factors to control fidelity and plasticity of gene expression as cells enter and exit mitosis; 2. Contributions of chromatin remodeling to breast cancer nuclear morphology, metabolism and effectiveness of chemotherapy; 3. Relationships between fidelity of nuclear organization and metastasis of breast cancer to bone; 4. Dynamic modifications of higher-order inter- and intra-chromosomal interactions in breast cancer cells; 5. Coordinate control of cell growth and phenotype by tissue-specific transcription factors; 6. Oncofetal epigenetic control by bivalent histone modifications that are functionally related to sustaining the stem cell phenotype; and 7. Noncoding RNA-mediated regulation in the onset and progression of breast cancer. The discovery of components to nuclear organization that are functionally related to cancer and compromise gene expression have the potential for translation to innovative cancer diagnosis and targeted therapy.


Assuntos
Epigênese Genética/genética , Animais , Neoplasias da Mama/genética , Núcleo Celular/metabolismo , Montagem e Desmontagem da Cromatina/genética , Montagem e Desmontagem da Cromatina/fisiologia , Humanos , Mitose/genética , Mitose/fisiologia
12.
Mol Cancer Res ; 16(4): 587-598, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29378907

RESUMO

Aggressive breast cancer is difficult to treat as it is unresponsive to many hormone-based therapies; therefore, it is imperative to identify novel, targetable regulators of progression. Long non-coding RNAs (lncRNA) are important regulators in breast cancer and have great potential as therapeutic targets; however, little is known about how the majority of lncRNAs function within breast cancer. This study characterizes a novel lncRNA, MANCR (mitotically-associated long noncoding RNA; LINC00704), which is upregulated in breast cancer patient specimens and cells. Depletion of MANCR in triple-negative breast cancer cells significantly decreases cell proliferation and viability, with concomitant increases in DNA damage. Transcriptome analysis, based on RNA sequencing, following MANCR knockdown reveals significant differences in the expression of >2,000 transcripts, and gene set enrichment analysis identifies changes in multiple categories related to cell-cycle regulation. Furthermore, MANCR expression is highest in mitotic cells by both RT-qPCR and RNA in situ hybridization. Consistent with a role in cell-cycle regulation, MANCR-depleted cells have a lower mitotic index and higher incidences of defective cytokinesis and cell death. Taken together, these data reveal a role for the novel lncRNA, MANCR, in genomic stability of aggressive breast cancer, and identify it as a potential therapeutic target.Implications: The novel lncRNA, MANCR (LINC00704), is upregulated in breast cancer and is functionally linked with cell proliferation, viability, and genomic stability. Mol Cancer Res; 16(4); 587-98. ©2018 AACR.


Assuntos
Neoplasias da Mama/genética , Mitose , RNA Longo não Codificante/genética , Regulação para Cima , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Instabilidade Genômica , Humanos , Análise de Sequência de RNA
13.
J Cell Physiol ; 233(2): 1291-1299, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28488769

RESUMO

Long non-coding RNAs (lncRNAs) are acknowledged as regulators of cancer biology and pathology. Our goal was to perform a stringent profiling of breast cancer cell lines that represent disease progression. We used the MCF-10 series, which includes the normal-like MCF-10A, HRAS-transformed MCF-10AT1 (pre-malignant), and MCF-10CA1a (malignant) cells, to perform transcriptome wide sequencing. From these data, we have identified 346 lncRNAs with dysregulated expression across the progression series. By comparing lncRNAs from these datasets to those from an additional set of cell lines that represent different disease stages and subtypes, MCF-7 (early stage, luminal), and MDA-MB-231 (late stage, basal), 61 lncRNAs that are associated with breast cancer progression were identified. Querying breast cancer patient data from The Cancer Genome Atlas, we selected a lncRNA, IGF-like family member 2 antisense RNA 1 (IGFL2-AS1), of potential clinical relevance for functional characterization. Among the 61 lncRNAs, IGFL2-AS1 was the most significantly decreased. Our results indicate that this lncRNA plays a role in downregulating its nearest neighbor, IGFL1, and affects migration of breast cancer cells. Furthermore, the lncRNAs we identified provide a valuable resource to mechanistically and clinically understand the contribution of lncRNAs in breast cancer progression.


Assuntos
Neoplasias da Mama/genética , Transformação Celular Neoplásica/genética , Regulação Neoplásica da Expressão Gênica , RNA Longo não Codificante/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Biologia Computacional , Bases de Dados Genéticas , Progressão da Doença , Feminino , Perfilação da Expressão Gênica , Predisposição Genética para Doença , Humanos , Invasividade Neoplásica , Fenótipo , Interferência de RNA , RNA Longo não Codificante/metabolismo , Transcriptoma , Transfecção
14.
J Cell Physiol ; 233(2): 1278-1290, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28504305

RESUMO

Alterations in nuclear morphology are common in cancer progression. However, the degree to which gross morphological abnormalities translate into compromised higher-order chromatin organization is poorly understood. To explore the functional links between gene expression and chromatin structure in breast cancer, we performed RNA-seq gene expression analysis on the basal breast cancer progression model based on human MCF10A cells. Positional gene enrichment identified the major histone gene cluster at chromosome 6p22 as one of the most significantly upregulated (and not amplified) clusters of genes from the normal-like MCF10A to premalignant MCF10AT1 and metastatic MCF10CA1a cells. This cluster is subdivided into three sub-clusters of histone genes that are organized into hierarchical topologically associating domains (TADs). Interestingly, the sub-clusters of histone genes are located at TAD boundaries and interact more frequently with each other than the regions in-between them, suggesting that the histone sub-clusters form an active chromatin hub. The anchor sites of loops within this hub are occupied by CTCF, a known chromatin organizer. These histone genes are transcribed and processed at a specific sub-nuclear microenvironment termed the major histone locus body (HLB). While the overall chromatin structure of the major HLB is maintained across breast cancer progression, we detected alterations in its structure that may relate to gene expression. Importantly, breast tumor specimens also exhibit a coordinate pattern of upregulation across the major histone gene cluster. Our results provide a novel insight into the connection between the higher-order chromatin organization of the major HLB and its regulation during breast cancer progression.


Assuntos
Neoplasias da Mama/genética , Montagem e Desmontagem da Cromatina , Cromatina/genética , Cromossomos Humanos Par 6 , Histonas/genética , Família Multigênica , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Núcleo Celular/patologia , Forma do Núcleo Celular , Proliferação de Células , Cromatina/metabolismo , Biologia Computacional , Bases de Dados Genéticas , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença , Histonas/metabolismo , Humanos , Fenótipo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Regulação para Cima
15.
Oncotarget ; 8(11): 17610-17627, 2017 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-28407681

RESUMO

Runx1 is a well characterized transcription factor essential for hematopoietic differentiation and Runx1 mutations are the cause of leukemias. Runx1 is highly expressed in normal epithelium of most glands and recently has been associated with solid tumors. Notably, the function of Runx1 in the mammary gland and how it is involved in initiation and progression of breast cancer is still unclear. Here we demonstrate the consequences of Runx1 loss in normal mammary epithelial and breast cancer cells. We first observed that Runx1 is decreased in tumorigenic and metastatic breast cancer cells. We also observed loss of Runx1 expression upon induction of epithelial-mesenchymal transition (EMT) in MCF10A (normal-like) cells. Furthermore depletion of Runx1 in MCF10A cells resulted in striking changes in cell shape, leading to mesenchymal cell morphology. The epithelial phenotype could be restored in breast cancer cells by re-expressing Runx1. Analyses of breast tumors and patient data revealed that low Runx1 expression is associated with poor prognosis and decreased survival. We addressed mechanisms for the function of Runx1 in maintaining the epithelial phenotype and find Runx1 directly regulates E-cadherin; and serves as a downstream transcription factor mediating TGFß signaling. We also observed through global gene expression profiling of growth factor depleted cells that induction of EMT and loss of Runx1 is associated with activation of TGFß and WNT pathways. Thus these findings have identified a novel function for Runx1 in sustaining normal epithelial morphology and preventing EMT and suggest Runx1 levels could be a prognostic indicator of tumor progression.


Assuntos
Neoplasias da Mama/patologia , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Células Epiteliais/patologia , Transição Epitelial-Mesenquimal/fisiologia , Regulação Neoplásica da Expressão Gênica/fisiologia , Western Blotting , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Células Epiteliais/metabolismo , Feminino , Imunofluorescência , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Fenótipo , Reação em Cadeia da Polimerase , Análise Serial de Tecidos , Transcriptoma
17.
Oncotarget ; 7(5): 5094-109, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26783963

RESUMO

The onset and progression of breast cancer are linked to genetic and epigenetic changes that alter the normal programming of cells. Epigenetic modifications of DNA and histones contribute to chromatin structure that result in the activation or repression of gene expression. Several epigenetic pathways have been shown to be highly deregulated in cancer cells. Targeting specific histone modifications represents a viable strategy to prevent oncogenic transformation, tumor growth or metastasis. Methylation of histone H3 lysine 4 has been extensively studied and shown to mark genes for expression; however this residue can also be acetylated and the specific function of this alteration is less well known. To define the relative roles of histone H3 methylation (H3K4me3) and acetylation (H3K4ac) in breast cancer, we determined genomic regions enriched for both marks in normal-like (MCF10A), transformed (MCF7) and metastatic (MDA-MB-231) cells using a genome-wide ChIP-Seq approach. Our data revealed a genome-wide gain of H3K4ac associated with both early and late breast cancer cell phenotypes, while gain of H3K4me3 was predominantly associated with late stage cancer cells. Enrichment of H3K4ac was over-represented at promoters of genes associated with cancer-related phenotypic traits, such as estrogen response and epithelial-to-mesenchymal transition pathways. Our findings highlight an important role for H3K4ac in predicting epigenetic changes associated with early stages of transformation. In addition, our data provide a valuable resource for understanding epigenetic signatures that correlate with known breast cancer-associated oncogenic pathways.


Assuntos
Neoplasias da Mama/genética , Metilação de DNA/genética , Histonas/metabolismo , Lisina/metabolismo , Acetilação , Neoplasias da Mama/metabolismo , Epigênese Genética , Feminino , Humanos
18.
Genome Biol ; 16: 214, 2015 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-26415882

RESUMO

BACKGROUND: Higher-order chromatin structure is often perturbed in cancer and other pathological states. Although several genetic and epigenetic differences have been charted between normal and breast cancer tissues, changes in higher-order chromatin organization during tumorigenesis have not been fully explored. To probe the differences in higher-order chromatin structure between mammary epithelial and breast cancer cells, we performed Hi-C analysis on MCF-10A mammary epithelial and MCF-7 breast cancer cell lines. RESULTS: Our studies reveal that the small, gene-rich chromosomes chr16 through chr22 in the MCF-7 breast cancer genome display decreased interaction frequency with each other compared to the inter-chromosomal interaction frequency in the MCF-10A epithelial cells. Interestingly, this finding is associated with a higher occurrence of open compartments on chr16-22 in MCF-7 cells. Pathway analysis of the MCF-7 up-regulated genes located in altered compartment regions on chr16-22 reveals pathways related to repression of WNT signaling. There are also differences in intra-chromosomal interactions between the cell lines; telomeric and sub-telomeric regions in the MCF-10A cells display more frequent interactions than are observed in the MCF-7 cells. CONCLUSIONS: We show evidence of an intricate relationship between chromosomal organization and gene expression between epithelial and breast cancer cells. Importantly, this work provides a genome-wide view of higher-order chromatin dynamics and a resource for studying higher-order chromatin interactions in two cell lines commonly used to study the progression of breast cancer.


Assuntos
Neoplasias da Mama/genética , Carcinogênese , Cromatina/genética , Células Epiteliais/metabolismo , Telômero/genética , Neoplasias da Mama/patologia , Epigênese Genética , Células Epiteliais/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Glândulas Mamárias Humanas/metabolismo , Glândulas Mamárias Humanas/patologia
19.
Bone ; 81: 746-756, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26039869

RESUMO

Non-coding RNAs (ncRNAs) have evolved in eukaryotes as epigenetic regulators of gene expression. The most abundant regulatory ncRNAs are the 20-24 nt small microRNAs (miRNAs) and long non-coding RNAs (lncRNAs, <200 nt). Each class of ncRNAs operates through distinct mechanisms, but their pathways to regulating gene expression are interrelated in ways that are just being recognized. While the importance of lncRNAs in epigenetic control of transcription, developmental processes and human traits is emerging, the identity of lncRNAs in skeletal biology is scarcely known. However, since the first profiling studies of miRNA at stages during osteoblast and osteoclast differentiation, over 1100 publications related to bone biology and pathologies can be found, as well as many recent comprehensive reviews summarizing miRNA in skeletal cells. Delineating the activities and targets of specific miRNAs regulating differentiation of osteogenic and resorptive bone cells, coupled with in vivo gain- and loss-of-function studies, discovered unique mechanisms that support bone development and bone homeostasis in adults. We present here "guiding principles" for addressing biological control of bone tissue formation by ncRNAs. This review emphasizes recent advances in understanding regulation of the process of miRNA biogenesis that impact on osteogenic lineage commitment, transcription factors and signaling pathways. Also discussed are the approaches to be pursued for an understanding of the role of lncRNAs in bone and the challenges in addressing their multiple and complex functions. Based on new knowledge of epigenetic control of gene expression to be gained for ncRNA regulation of the skeleton, new directions for translating the miRNAs and lncRNAs into therapeutic targets for skeletal disorders are possible. This article is part of a Special Issue entitled Epigenetics and Bone.


Assuntos
Desenvolvimento Ósseo/genética , Epigênese Genética , RNA não Traduzido/genética , Adulto , Animais , Osso e Ossos/citologia , Osso e Ossos/metabolismo , Linhagem da Célula/genética , Homeostase/genética , Humanos , MicroRNAs/genética , Modelos Biológicos , RNA não Traduzido/metabolismo , Transdução de Sinais
20.
J Cell Physiol ; 230(3): 526-34, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25258250

RESUMO

Long suspected, recently recognized, and increasingly studied, non protein-coding RNAs (ncRNAs) are emerging as key drivers of biological control and pathology. Since their discovery in 1993, microRNAs (miRNAs) have been the subject of intense research focus and investigations have revealed striking findings, establishing that these molecules can exert a substantial level of biological control in numerous tissues. More recently, long ncRNAs (lncRNAs), the lesser-studied siblings of miRNA, have been suggested to have a similar robust role in developmental and adult tissue regulation. Mesenchymal stem cells (MSCs) are an important source of multipotent cells for normal and therapeutic tissue repair. Much is known about the critical role of miRNAs in biogenesis and differentiation of MSCs however; recent studies have suggested lncRNAs may play an equally important role in the regulation of these cells. Here we highlight the role of lncRNAs in the regulation of mesenchymal stem cell lineages including adipocytes, chondrocytes, myoblasts, and osteoblasts. In addition, the potential for these noncoding RNAs to be used as biomarkers for disease or therapeutic targets is also discussed.


Assuntos
Diferenciação Celular/genética , Células-Tronco Mesenquimais/citologia , MicroRNAs/genética , RNA Longo não Codificante/genética , Adipócitos/citologia , Adipócitos/metabolismo , Condrócitos/citologia , Condrócitos/metabolismo , Humanos , Mioblastos/citologia , Mioblastos/metabolismo , Osteoblastos/citologia , Osteoblastos/metabolismo , RNA Longo não Codificante/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA