Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
J Neural Eng ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38861967

RESUMO

OBJECTIVE: We intend to chronically restore somatosensation and provide high-fidelity myoelectric control for those with limb loss via a novel, distributed, high-channel-count, implanted system. APPROACH: We have developed the implanted Somatosensory Electrical Neurostimulation and Sensing (iSens®) system to support peripheral nerve stimulation through up to 64, 96, or 128 electrode contacts with myoelectric recording from 16, 8, or 0 bipolar sites, respectively. The rechargeable central device has Bluetooth® wireless telemetry to communicate to external devices and wired connections for up to four implanted satellite stimulation or recording devices. We characterized the stimulation, recording, battery runtime, and wireless performance and completed safety testing to support its use in human trials. RESULTS: The stimulator operates as expected across a range of parameters and can schedule multiple asynchronous, interleaved pulse trains subject to total charge delivery limits. Recorded signals in saline show negligible stimulus artifact when 10 cm from a 1 mA stimulating source. The wireless telemetry range exceeds 1 m (direction and orientation dependent) in a saline torso phantom. The bandwidth supports 100 Hz bidirectional update rates of stimulation commands and data features or streaming select full bandwidth myoelectric signals. Preliminary first-in-human data validates the bench testing result. SIGNIFICANCE: We developed, tested, and clinically implemented an advanced, modular, fully implanted peripheral stimulation and sensing system for somatosensory restoration and myoelectric control. The modularity in electrode type and number, including distributed sensing and stimulation, supports a wide variety of applications; iSens® is a flexible platform to bring peripheral neuromodulation applications to clinical reality. CLINICALTRIALS: gov ID NCT04430218. .

2.
Neurosurgery ; 94(4): 864-874, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37982637

RESUMO

BACKGROUND AND OBJECTIVES: Paralysis after spinal cord injury involves damage to pathways that connect neurons in the brain to peripheral nerves in the limbs. Re-establishing this communication using neural interfaces has the potential to bridge the gap and restore upper extremity function to people with high tetraplegia. We report a novel approach for restoring upper extremity function using selective peripheral nerve stimulation controlled by intracortical microelectrode recordings from sensorimotor networks, along with restoration of tactile sensation of the hand using intracortical microstimulation. METHODS: A 27-year-old right-handed man with AIS-B (motor-complete, sensory-incomplete) C3-C4 tetraplegia was enrolled into the clinical trial. Six 64-channel intracortical microelectrode arrays were implanted into left hemisphere regions involved in upper extremity function, including primary motor and sensory cortices, inferior frontal gyrus, and anterior intraparietal area. Nine 16-channel extraneural peripheral nerve electrodes were implanted to allow targeted stimulation of right median, ulnar (2), radial, axillary, musculocutaneous, suprascapular, lateral pectoral, and long thoracic nerves, to produce selective muscle contractions on demand. Proof-of-concept studies were performed to demonstrate feasibility of using a brain-machine interface to read from and write to the brain for restoring motor and sensory functions of the participant's own arm and hand. RESULTS: Multiunit neural activity that correlated with intended motor action was successfully recorded from intracortical arrays. Microstimulation of electrodes in somatosensory cortex produced repeatable sensory percepts of individual fingers for restoration of touch sensation. Selective electrical activation of peripheral nerves produced antigravity muscle contractions, resulting in functional movements that the participant was able to command under brain control to perform virtual and actual arm and hand movements. The system was well tolerated with no operative complications. CONCLUSION: The combination of implanted cortical electrodes and nerve cuff electrodes has the potential to create bidirectional restoration of motor and sensory functions of the arm and hand after neurological injury.


Assuntos
Braço , Interfaces Cérebro-Computador , Adulto , Humanos , Masculino , Braço/inervação , Encéfalo , Eletrodos Implantados , Mãos/fisiologia , Quadriplegia , Extremidade Superior , Ensaios Clínicos como Assunto
3.
J Neural Eng ; 20(6)2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-37863034

RESUMO

Objective.This study's objective is to understand distally-referred surface electrical nerve stimulation (DR-SENS) and evaluates the effects of electrode placement, polarity, and stimulation intensity on the location of elicited sensations in non-disabled individuals.Approach.A two-phased human experiment was used to characterize DR-SENS. In Experiment One, we explored 182 electrode combinations to identify a subset of electrode position combinations that would be most likely to elicit distally-referred sensations isolated to the index finger without discomfort. In Experiment Two, we further examined this subset of electrode combinations to determine the effect of stimulation intensity and electrode position on perceived sensation location. Stimulation thresholds were evaluated using parameter estimation by sequential testing and sensation locations were characterized using psychometric intensity tests.Main Results.We found that electrode positions distal to the wrist can consistently evoke distally referred sensations with no significant polarity dependency. The finger-palm combination had the most occurrences of distal sensations, and the different variations of this combination did not have a significant effect on sensation location. Increasing stimulation intensity significantly expanded the area of the sensation, moved the most distal sensation distally, and moved the vertical centroid proximally. Also, a large anodic-leading electrode at the elbow mitigated all sensation at the anodic-leading electrode site while using symmetric stimulation waveforms. Furthermore, this study showed that the most intense sensation for a given percept can be distally referred. Lastly, for each participant, at least one of the finger-palm combinations evaluated in this study worked at both perception threshold and maximum comfortable stimulation intensities.Significance.These findings show that a non-invasive surface electrical stimulation charge modulated haptic interface can be used to elicit distally-referred sensations on non-disabled users. Furthermore, these results inform the design of novel haptic interfaces and other applications of surface electrical stimulation based haptic feedback on electrodes positioned distally from the wrist.


Assuntos
Interface Háptica , Tecnologia Háptica , Humanos , Retroalimentação , Mãos/fisiologia , Estimulação Elétrica/métodos
4.
medRxiv ; 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37162904

RESUMO

Background: Paralysis after spinal cord injury involves damage to pathways that connect neurons in the brain to peripheral nerves in the limbs. Re-establishing this communication using neural interfaces has the potential to bridge the gap and restore upper extremity function to people with high tetraplegia. Objective: We report a novel approach for restoring upper extremity function using selective peripheral nerve stimulation controlled by intracortical microelectrode recordings from sensorimotor networks, along with restoration of tactile sensation of the hand using intracortical microstimulation. Methods: A right-handed man with motor-complete C3-C4 tetraplegia was enrolled into the clinical trial. Six 64-channel intracortical microelectrode arrays were implanted into left hemisphere regions involved in upper extremity function, including primary motor and sensory cortices, inferior frontal gyrus, and anterior intraparietal area. Nine 16-channel extraneural peripheral nerve electrodes were implanted to allow targeted stimulation of right median, ulnar (2), radial, axillary, musculocutaneous, suprascapular, lateral pectoral, and long thoracic nerves, to produce selective muscle contractions on demand. Proof-of-concept studies were performed to demonstrate feasibility of a bidirectional brain-machine interface to restore function of the participant's own arm and hand. Results: Multi-unit neural activity that correlated with intended motor action was successfully recorded from intracortical arrays. Microstimulation of electrodes in somatosensory cortex produced repeatable sensory percepts of individual fingers for restoration of touch sensation. Selective electrical activation of peripheral nerves produced antigravity muscle contractions. The system was well tolerated with no operative complications. Conclusion: The combination of implanted cortical electrodes and nerve cuff electrodes has the potential to allow restoration of motor and sensory functions of the arm and hand after neurological injury.

5.
Nat Biomed Eng ; 7(4): 443-455, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-33230305

RESUMO

Individuals who have lost the use of their hands because of amputation or spinal cord injury can use prosthetic hands to restore their independence. A dexterous prosthesis requires the acquisition of control signals that drive the movements of the robotic hand, and the transmission of sensory signals to convey information to the user about the consequences of these movements. In this Review, we describe non-invasive and invasive technologies for conveying artificial sensory feedback through bionic hands, and evaluate the technologies' long-term prospects.


Assuntos
Membros Artificiais , Robótica , Humanos , Biônica , Desenho de Prótese , Mãos
7.
J Biomech ; 136: 111058, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35349870

RESUMO

Design of interface devices for effective, long-term integration into neural tissue is dependent on the biomechanical properties of the nerve membranes. Within the peripheral nerve, the two relevant connective tissue layers for interfacing are the epineurium and perineurium. Previous work has reported the forces needed to penetrate the whole nerve, but the mechanical differences between epineurium and perineurium were not reported. Design of intraneural electrodes that place electrodes within the nerve requires knowledge of the mechanics of individual tissues. This study quantified the Young's moduli and ultimate strains of the perineurium and the epineurium separately. We also measured the forces necessary to penetrate each tissue in isolation. We used a custom-built microtensile testing device to measure the Young's modulus values. The measured Young's moduli of the epineurium and the perineurium was 0.4 ± 0.1 MPa and 3.0 ± 0.3 MPa, respectively. We also measured the force required for blunt and sharp stainless steel, 100 µm diameter probes to be inserted into isolated epineurial tissue and perineurial tissue at 2 mm/s. These data provide additional guidelines for selection of materials for long-term implants that best match the tissue properties. The results will guide neural interface design such that electrodes can be placed through either the epineurium alone or both the epineurium and perineurium.


Assuntos
Nervos Periféricos , Nervo Isquiático , Animais , Tecido Conjuntivo , Nervos Periféricos/fisiologia , Coelhos , Nervo Isquiático/fisiologia
8.
J Neurosci ; 42(10): 2052-2064, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35074865

RESUMO

Electrical stimulation of the peripheral nerves of human participants provides a unique opportunity to study the neural determinants of perceptual quality using a causal manipulation. A major challenge in the study of neural coding of touch has been to isolate the role of spike timing-at the scale of milliseconds or tens of milliseconds-in shaping the sensory experience. In the present study, we address this question by systematically varying the pulse frequency (PF) of electrical stimulation pulse trains delivered to the peripheral nerves of seven participants with upper and lower extremity limb loss via chronically implanted neural interfaces. We find that increases in PF lead to systematic increases in perceived frequency, up to ∼50 Hz, at which point further changes in PF have little to no impact on sensory quality. Above this transition frequency, ratings of perceived frequency level off, the ability to discriminate changes in PF is abolished, and verbal descriptors selected to characterize the sensation change abruptly. We conclude that sensation quality is shaped by temporal patterns of neural activation, even if these patterns are imposed on a fixed neural population, but this temporal patterning can only be resolved up to ∼50 Hz. These findings highlight the importance of spike timing in shaping the quality of a sensation and will contribute to the development of encoding strategies for conveying touch feedback through bionic hands and feet.SIGNIFICANCE STATEMENT A major challenge in the study of neural coding of touch has been to understand how temporal patterns in neuronal responses shape the sensory experience. We address this question by varying the pulse frequency (PF) of electrical pulse trains delivered through implanted nerve interfaces in seven amputees. We concomitantly vary pulse width to separate the effect of changing PF on sensory quality from its effect on perceived magnitude. We find that increases in PF lead to increases in perceived frequency, a qualitative dimension, up to ∼50 Hz, beyond which changes in PF have little impact on quality. We conclude that temporal patterning in the neuronal response can shape quality and discuss the implications for restoring touch via neural interfaces.


Assuntos
Amputados , Percepção do Tato , Estimulação Elétrica/métodos , Mãos , Humanos , Tato/fisiologia , Percepção do Tato/fisiologia
9.
J Neural Eng ; 18(6)2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34706351

RESUMO

Objective.Computational models have shown that directional electrical contacts placed within the epineurium, between the fascicles, and not penetrating the perineurium, can achieve selectivity levels similar to point source contacts placed within the fascicle. The objective of this study is to test, in a murine model, the hypothesis that directed interfascicular contacts are selective.Approach.Multiple interfascicular electrodes with directional contacts, exposed on a single face, were implanted in the sciatic nerves of 32 rabbits. Fine-wire intramuscular wire electrodes were implanted to measure electromyographic (EMG) activity from medial and lateral gastrocnemius, soleus, and tibialis anterior muscles.Main results.The recruitment data demonstrated that directed interfascicular interfaces, which do not penetrate the perineurium, selectively activate different axon populations.Significance.Interfascicular interfaces that are inside the nerve, but do not penetrate the perineurium are an alternative to intrafascicular interfaces and may offer additional selectivity compared to extraneural approaches.


Assuntos
Nervos Periféricos , Estimulação Elétrica Nervosa Transcutânea , Animais , Axônios/fisiologia , Estimulação Elétrica/métodos , Eletrodos Implantados , Camundongos , Nervos Periféricos/fisiologia , Coelhos , Nervo Isquiático/fisiologia
10.
J Neuroeng Rehabil ; 18(1): 50, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33736656

RESUMO

BACKGROUND: Current commercial prosthetic hand controllers limit patients' ability to fully engage high Degree-of-Freedom (DoF) prosthetic hands. Available feedforward controllers rely on large training data sets for controller setup and a need for recalibration upon prosthesis donning. Recently, an intuitive, proportional, simultaneous, regression-based 3-DoF controller remained stable for several months without retraining by combining chronically implanted electromyography (ciEMG) electrodes with a K-Nearest-Neighbor (KNN) mapping technique. The training dataset requirements for simultaneous KNN controllers increase exponentially with DoF, limiting the realistic development of KNN controllers in more than three DoF. We hypothesize that a controller combining linear interpolation, the muscle synergy framework, and a sufficient number of ciEMG channels (at least two per DoF), can allow stable, high-DoF control. METHODS: Two trans-radial amputee subjects, S6 and S8, were implanted with percutaneously interfaced bipolar intramuscular electrodes. At the time of the study, S6 and S8 had 6 and 8 bipolar EMG electrodes, respectively. A Virtual Reality (VR) system guided users through single and paired training movements in one 3-DoF and four different 4-DoF cases. A linear model of user activity was built by partitioning EMG feature space into regions bounded by vectors of steady state movement EMG patterns. The controller evaluated online EMG signals by linearly interpolating the movement class labels for surrounding trained EMG movements. This yields a simultaneous, continuous, intuitive, and proportional controller. Controllers were evaluated in 3-DoF and 4-DoF through a target-matching task in which subjects controlled a virtual hand to match 80 targets spanning the available movement space. Match Percentage, Time-To-Target, and Path Efficiency were evaluated over a 10-month period based on subject availability. RESULTS AND CONCLUSIONS: In 3-DoF, S6 and S8 matched most targets and demonstrated stable control after 8 and 10 months, respectively. In 4-DoF, both subjects initially found two of four 4-DoF controllers usable, matching most targets. S8 4-DoF controllers were stable, and showed improving trends over 7-9 months without retraining or at-home practice. S6 4-DoF controllers were unstable after 7 months without retraining. These results indicate that the performance of the controller proposed in this study may remain stable, or even improve, provided initial viability and a sufficient number of EMG channels. Overall, this study demonstrates a controller capable of stable, simultaneous, proportional, intuitive, and continuous control in 3-DoF for up to ten months and in 4-DoF for up to nine months without retraining or at-home use with minimal training times.


Assuntos
Amputados/reabilitação , Membros Artificiais , Eletrodos Implantados , Mãos , Movimento , Treinamento por Simulação/métodos , Realidade Virtual , Braço/inervação , Interfaces Cérebro-Computador , Eletromiografia/métodos , Humanos , Modelos Lineares , Masculino , Músculo Esquelético/inervação , Educação de Pacientes como Assunto/métodos , Modalidades de Fisioterapia/instrumentação , Software
11.
J Neuroeng Rehabil ; 17(1): 95, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32664972

RESUMO

BACKGROUND: Peripheral nerve stimulation with implanted nerve cuff electrodes can restore standing, stepping and other functions to individuals with spinal cord injury (SCI). We performed the first study to evaluate the clinical electrodiagnostic changes due to electrode implantation acutely, chronic presence on the nerve peri- and post-operatively, and long-term delivery of electrical stimulation. METHODS: A man with bilateral lower extremity paralysis secondary to cervical SCI sustained 5 years prior to enrollment received an implanted standing neuroprosthesis including composite flat interface nerve electrodes (C-FINEs) electrodes implanted around the proximal femoral nerves near the inguinal ligaments. Electromyography quantified neurophysiology preoperatively, intraoperatively, and through 1 year postoperatively. Stimulation charge thresholds, evoked knee extension moments, and weight distribution during standing quantified neuroprosthesis function over the same interval. RESULTS: Femoral compound motor unit action potentials increased 31% in amplitude and 34% in area while evoked knee extension moments increased significantly (p < 0.01) by 79% over 1 year of rehabilitation with standing and quadriceps exercises. Charge thresholds were low and stable, averaging 19.7 nC ± 6.2 (SEM). Changes in saphenous nerve action potentials and needle electromyography suggested minor nerve irritation perioperatively. CONCLUSIONS: This is the first human trial reporting acute and chronic neurophysiologic changes due to application of and stimulation through nerve cuff electrodes. Electrodiagnostics indicated preserved nerve health with strengthened responses following stimulated exercise. Temporary electrodiagnostic changes suggest minor nerve irritation only intra- and peri-operatively, not continuing chronically nor impacting function. These outcomes follow implantation of a neuroprosthesis enabling standing and demonstrate the ability to safely implant electrodes on the proximal femoral nerve close to the inguinal ligament. We demonstrate the electrodiagnostic findings that can be expected from implanting nerve cuff electrodes and their time-course for resolution, potentially applicable to prostheses modulating other peripheral nerves and functions. TRIAL REGISTRATION: ClinicalTrials.gov NCT01923662 , retrospectively registered August 15, 2013.


Assuntos
Terapia por Estimulação Elétrica/métodos , Eletrodos Implantados/efeitos adversos , Nervo Femoral/fisiologia , Próteses Neurais/efeitos adversos , Potenciais de Ação , Adulto , Fenômenos Biomecânicos , Terapia por Estimulação Elétrica/efeitos adversos , Eletrodiagnóstico , Eletromiografia , Humanos , Joelho , Masculino , Força Muscular , Paralisia/reabilitação , Paraplegia/reabilitação , Complicações Pós-Operatórias/epidemiologia , Traumatismos da Medula Espinal/reabilitação
12.
Sci Rep ; 10(1): 10216, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32576891

RESUMO

The contribution of somatosensation to locomotor deficits in below-knee amputees (BKAs) has not been fully explored. Unilateral disruption of plantar sensation causes able-bodied individuals to adopt locomotor characteristics that resemble those of unilateral BKAs, suggesting that restoring somatosensation may improve locomotion for amputees. In prior studies, we demonstrated that electrically stimulating the residual nerves of amputees elicited somatosensory percepts that were felt as occurring in the missing foot. Subsequently, we developed a sensory neuroprosthesis that modulated stimulation-evoked sensation in response to interactions between the prosthesis and the environment. To characterize the impact of the sensory neuroprosthesis on locomotion, we created a novel ambulatory searching task. The task involved walking on a horizontal ladder while blindfolded, which engaged plantar sensation while minimizing visual compensation. We first compared the performance of six BKAs to 14 able-bodied controls. Able-bodied individuals demonstrated higher foot placement accuracy than BKAs, indicating that the ladder test was sensitive enough to detect locomotor deficits. When three of the original six BKAs used the sensory neuroprosthesis, the tradeoff between speed and accuracy significantly improved for two of them. This study advanced our understanding of how cutaneous plantar sensation can be used to acquire action-related information during challenging locomotor tasks.


Assuntos
Assistência Ambulatorial/métodos , Amputados/reabilitação , Membros Artificiais/normas , Retroalimentação Sensorial/fisiologia , Marcha/fisiologia , Córtex Somatossensorial/fisiologia , Caminhada/fisiologia , Adulto , Fenômenos Biomecânicos , Estudos de Casos e Controles , Feminino , Humanos , Extremidade Inferior , Masculino
13.
IEEE Trans Biomed Eng ; 67(5): 1397-1408, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31449001

RESUMO

Neural stimulation systems are often limited by rapid muscle fatigue. Selective nerve cuff electrodes can target independent yet synergistic motor unit pools (MUPs), which can be used in duty-cycle reducing stimulation paradigms to prolong joint moment output. OBJECTIVE: This study investigates waveform parameters within moment-prolonging paradigms and determines strategies for their optimal implementation. METHODS: Composite flat-interface nerve cuff electrodes (C-FINEs) were chronically implanted on feline proximal sciatic nerves. Cyclic stimulation tests determined effects of stimulation period and duty cycle in different MUP types. Ideal parameters were then used in duty-cycle reducing carousel stimulation. Time to 50% reduction in moment (T50), moment overshoot, and moment ripple were determined for constant, open-loop carousel, and moment feedback-controlled closed-loop carousel stimulation. RESULTS: A stimulation period of 1 s best maintained joint moment for all MUPs. Low (25%) duty cycles consistently improved joint moment maintenance, though allowable duty cycle varied among MUPs by gross muscle and fiber type. Both open- and closed-loop carousel stimulation significantly increased T50 over constant stimulation. Closed-loop carousel significantly decreased moment overshoot over the other conditions, and significantly decreased moment ripple compared with open-loop stimulation. CONCLUSION: Selectivity-enabled carousel stimulation prolongs joint moment over conventional constant stimulation. Appropriate waveform parameters can be quickly determined for individual MUPs and stimulation can be controlled for additional performance improvements with this paradigm. SIGNIFICANCE: Providing prolonged, stable joint moment and muscle output to recipients of motor neuroprostheses will improve clinical outcomes, increase independence, and positively impact quality of life.


Assuntos
Qualidade de Vida , Nervo Isquiático , Animais , Gatos , Estimulação Elétrica , Eletrodos , Eletrodos Implantados , Retroalimentação , Músculo Esquelético
14.
J Neuroeng Rehabil ; 16(1): 147, 2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31752886

RESUMO

BACKGROUND: Modern prosthetic hands are typically controlled using skin surface electromyographic signals (EMG) from remaining muscles in the residual limb. However, surface electrode performance is limited by changes in skin impedance over time, day-to-day variations in electrode placement, and relative motion between the electrodes and underlying muscles during movement: these limitations require frequent retraining of controllers. In the presented study, we used chronically implanted intramuscular electrodes to minimize these effects and thus create a more robust prosthetic controller. METHODS: A study participant with a transradial amputation was chronically implanted with 8 intramuscular EMG electrodes. A K Nearest Neighbor (KNN) regression velocity controller was trained to predict intended joint movement direction using EMG data collected during a single training session. The resulting KNN was evaluated over 12 weeks and in multiple arm posture configurations, with the participant controlling a 3 Degree-of-Freedom (DOF) virtual reality (VR) hand to match target VR hand postures. The performance of this EMG-based controller was compared to a position-based controller that used movement measured from the participant's opposite (intact) hand. Surface EMG was also collected for signal quality comparisons. RESULTS: Signals from the implanted intramuscular electrodes exhibited less crosstalk between the various channels and had a higher Signal-to-Noise Ratio than surface electrode signals. The performance of the intramuscular EMG-based KNN controller in the VR control task showed no degradation over time, and was stable over the 6 different arm postures. Both the EMG-based KNN controller and the intact hand-based controller had 100% hand posture matching success rates, but the intact hand-based controller was slightly superior in regards to speed (trial time used) and directness of the VR hand control (path efficiency). CONCLUSIONS: Chronically implanted intramuscular electrodes provide negligible crosstalk, high SNR, and substantial VR control performance, including the ability to use a fixed controller over 12 weeks and under different arm positions. This approach can thus be a highly effective platform for advanced, multi-DOF prosthetic control.


Assuntos
Membros Artificiais , Eletrodos Implantados , Músculo Esquelético/fisiologia , Desenho de Prótese , Interface Usuário-Computador , Adulto , Amputação Cirúrgica , Eletromiografia/métodos , Mãos/fisiologia , Humanos , Masculino , Movimento/fisiologia
15.
IEEE Trans Neural Syst Rehabil Eng ; 27(12): 2317-2327, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31689196

RESUMO

Peripheral nerve cuff electrodes (NCEs) in motor system neuroprostheses can generate strong muscle contractions and enhance surgical efficiency by accessing multiple muscles from a single proximal location. Predicting chronic performance of high contact density NCEs based on intraoperative observations would facilitate implantation at locations that maximize selective recruitment, immediate connection of optimal contacts to implanted pulse generators (IPGs) with limited output channels, and initiation of postoperative rehabilitation as soon as possible after surgery. However, the stability of NCE intraoperative recruitment to predict chronic performance has not been documented. Here we report the first-in-human application of a specific NCE, the composite flat interface nerve electrode (C-FINE), at a new and anatomically challenging location on the femoral nerve close to the inguinal ligaments. EMG and moment recruitment curves were recorded for each of the 8 contacts in 2 C-FINE intraoperatively, perioperatively, and chronically for 6 months. Intraoperative measurements predicted chronic outcomes for 87.5% of contacts with 14/16 recruiting the same muscles at 6 months as intraoperatively. In both 8-contact C-FINEs, 3 contacts elicited hip flexion and 5 selectively generated knee extension, 3 of which activated independent motor unit populations each sufficient to support standing. Recruitment order stabilized in less than 3 weeks and did not change thereafter. While confirmation of these results will be required with future studies and implant locations, this suggests that remobilization and stimulated exercise may be initiated 3 weeks after surgery with little risk of altering performance.


Assuntos
Eletrodos Implantados , Nervo Femoral , Monitorização Intraoperatória/métodos , Próteses Neurais , Implantação de Prótese , Estimulação Elétrica , Eletromiografia , Quadril , Humanos , Período Intraoperatório , Joelho , Neurônios Motores , Movimento , Fibras Musculares Esqueléticas , Valor Preditivo dos Testes , Traumatismos da Medula Espinal/reabilitação , Resultado do Tratamento
16.
Front Neurosci ; 13: 853, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31496931

RESUMO

Upper limb prostheses are specialized tools, and skilled operation is learned by amputees over time. Recently, neural prostheses using implanted peripheral nerve interfaces have enabled advances in artificial somatosensory feedback that can improve prosthesis outcomes. However, the effect of sensory learning on artificial somatosensation has not been studied, despite its known influence on intact somatosensation and analogous neuroprostheses. Sensory learning involves changes in the perception and interpretation of sensory feedback and may further influence functional and psychosocial outcomes. In this mixed methods case study, we examined how passive learning over 115 days of home use of a neural-connected, sensory-enabled prosthetic hand influenced perception of artificial sensory feedback in a participant with transradial amputation. We examined perceptual changes both within individual days of use and across the duration of the study. At both time scales, the reported percept locations became significantly more aligned with prosthesis sensor locations, and the phantom limb became significantly more extended toward the prosthesis position. Similarly, the participant's ratings of intensity, naturalness, and contact touch significantly increased, while his ratings of vibration and movement significantly decreased across-days for tactile channels. These sensory changes likely resulted from engagement of cortical plasticity mechanisms as the participant learned to use the artificial sensory feedback. We also assessed psychosocial and functional outcomes through surveys and interviews, and found that self-efficacy, perceived function, prosthesis embodiment, social touch, body image, and prosthesis efficiency improved significantly. These outcomes typically improved within the first month of home use, demonstrating rapid benefits of artificial sensation. Participant interviews indicated that the naturalness of the experience and engagement with the prosthesis increased throughout the study, suggesting that artificial somatosensation may decrease prosthesis abandonment. Our data showed that prosthesis embodiment was intricately related to naturalness and phantom limb perception, and that learning the artificial sensation may have modified the body schema. As another indicator of successfully learning to use artificial sensation, the participant reported the emergence of stereognosis later in the study. This study provides the first evidence that artificial somatosensation can undergo similar learning processes as intact sensation and highlights the importance of sensory restoration in prostheses.

17.
J Neural Eng ; 16(6): 063002, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31557730

RESUMO

OBJECTIVE: Recent advances in neural engineering have restored mobility to people with paralysis, relieved symptoms of movement disorders, reduced chronic pain, restored the sense of hearing, and provided sensory perception to individuals with sensory deficits. APPROACH: This progress was enabled by the team-based, interdisciplinary approaches used by neural engineers. Neural engineers have advanced clinical frontiers by leveraging tools and discoveries in quantitative and biological sciences and through collaborations between engineering, science, and medicine. The movement toward bioelectronic medicines, where neuromodulation aims to supplement or replace pharmaceuticals to treat chronic medical conditions such as high blood pressure, diabetes and psychiatric disorders is a prime example of a new frontier made possible by neural engineering. Although one of the major goals in neural engineering is to develop technology for clinical applications, this technology may also offer unique opportunities to gain insight into how biological systems operate. MAIN RESULTS: Despite significant technological progress, a number of ethical and strategic questions remain unexplored. Addressing these questions will accelerate technology development to address unmet needs. The future of these devices extends far beyond treatment of neurological impairments, including potential human augmentation applications. Our task, as neural engineers, is to push technology forward at the intersection of disciplines, while responsibly considering the readiness to transition this technology outside of the laboratory to consumer products. SIGNIFICANCE: This article aims to highlight the current state of the neural engineering field, its links with other engineering and science disciplines, and the challenges and opportunities ahead. The goal of this article is to foster new ideas for innovative applications in neurotechnology.


Assuntos
Bioengenharia/tendências , Doença Crônica/reabilitação , Doença Crônica/tendências , Invenções/tendências , Doenças do Sistema Nervoso/reabilitação , Bioengenharia/métodos , Previsões , Humanos
18.
J Neurosci Methods ; 328: 108414, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31472187

RESUMO

The purpose of this review article is to describe the underlying methodology for successfully translating novel interfaces for electrical modulation of the peripheral nervous system (PNS) from basic design concepts to clinical applications and chronic human use. Despite advances in technologies to communicate directly with the nervous system, the pathway to clinical translation for most neural interfaces is not clear. FDA guidelines provide information on necessary evidence which should be generated and submitted to allow the agency evaluate safety and efficacy of a new medical device. However, a knowledge gap exists on translating neural interfaces from pre-clinical studies into the clinical domain. Our article is intended to inform the field on some of the key considerations for such a transition process specific to neural interfaces that may not be already covered by FDA guidances. This framework focuses on non-penetrating peripheral nerve stimulating electrodes that have been proven effective for motor and sensory neural prostheses and successfully transitioned from pre-clinical through first-in-human and chronic clinical deployment. We discuss the challenges of moving these neural interfaces along the translational continuum and ultimately through FDA approval for human feasibility studies. Specifically, we describe a translational process involving: quantitative human anatomy, neural modeling and simulation, acute intraoperative testing and verification, clinical demonstration with temporary percutaneous access, and finally chronic clinical deployment and functional performance. To clarify and demonstrate the importance of each step of this translational framework, we present case studies from electrodes developed at Case Western Reserve University (CWRU), specifically the spiral cuff, the Flat Interface Nerve Electrode (FINE), and the Composite FINE (C-FINE). In addition, we demonstrate that success along this translational pathway can be further expedited by: appropriate selection of well-characterized materials, validation of fabrication and sterilization protocols, well-implemented quality control measures, and quantification of impact on neural structure, health, and function. The issues and approaches identified in this review for the peripheral nervous system may also serve to accelerate the dissemination of any new neural interface into clinical practice, and consequently advance the performance, utility, and clinical value of new neural prostheses or neuromodulation systems.


Assuntos
Estimulação Elétrica/métodos , Eletrodos , Próteses Neurais , Neurociências/métodos , Sistema Nervoso Periférico , Pesquisa Translacional Biomédica/métodos , Estimulação Elétrica/instrumentação , Humanos , Neurociências/instrumentação , Pesquisa Translacional Biomédica/instrumentação
19.
Sci Rep ; 9(1): 11699, 2019 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-31406122

RESUMO

The perception of somatosensation requires the integration of multimodal information, yet the effects of vision and posture on somatosensory percepts elicited by neural stimulation are not well established. In this study, we applied electrical stimulation directly to the residual nerves of trans-tibial amputees to elicit sensations referred to their missing feet. We evaluated the influence of congruent and incongruent visual inputs and postural manipulations on the perceived size and location of stimulation-evoked somatosensory percepts. We found that although standing upright may cause percept size to change, congruent visual inputs and/or body posture resulted in better localization. We also observed visual capture: the location of a somatosensory percept shifted toward a visual input when vision was incongruent with stimulation-induced sensation. Visual capture did not occur when an adopted posture was incongruent with somatosensation. Our results suggest that internal model predictions based on postural manipulations reinforce perceived sensations, but do not alter them. These characterizations of multisensory integration are important for the development of somatosensory-enabled prostheses because current neural stimulation paradigms cannot replicate the afferent signals of natural tactile stimuli. Nevertheless, multisensory inputs can improve perceptual precision and highlight regions of the foot important for balance and locomotion.


Assuntos
Amputados/reabilitação , Equilíbrio Postural/fisiologia , Postura/fisiologia , Córtex Somatossensorial/fisiologia , Percepção do Tato/fisiologia , Percepção Visual/fisiologia , Idoso , Membros Artificiais , Estimulação Elétrica , Humanos , Perna (Membro)/inervação , Perna (Membro)/cirurgia , Masculino , Pessoa de Meia-Idade , Tíbia/inervação , Tíbia/cirurgia , Tato/fisiologia , Visão Ocular/fisiologia
20.
J Neural Eng ; 16(3): 036025, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30939464

RESUMO

OBJECTIVE: Previous studies suggest that somatosensory feedback has the potential to improve the functional performance of prostheses, reduce phantom pain, and enhance embodiment of sensory-enabled prosthetic devices. To maximize such benefits for amputees, the temporal properties of the sensory feedback must resemble those of natural somatosensation in an intact limb. APPROACH: To better understand temporal perception of artificial sensation, we characterized the perception of visuotactile synchrony for tactile perception restored via peripheral nerve stimulation. We electrically activated nerves in the residual limbs of two trans-tibial amputees and two trans-radial amputees via non-penetrating nerve cuff electrodes, which elicited sensations referred to the missing limbs. MAIN RESULTS: Our findings suggest that with respect to vision, stimulation-induced sensation has a point of subjective simultaneity (PSS; processing time) and just noticeable difference (JND; temporal sensitivity) that are similar to natural touch. The JND was not significantly different between the participants with upper- and lower-limb amputations. However, the PSS indicated that sensations evoked in the missing leg must occur significantly earlier than those in the hand to be perceived as maximally synchronous with vision. Furthermore, we examined visuotactile synchrony in the context of a functional task during which stimulation was triggered by pressure applied to the prosthesis. Stimulation-induced sensation could be delayed up to 111 ± 62 ms without the delay being reliably detected. SIGNIFICANCE: The quantitative temporal properties of stimulation-induced perception were previously unknown and will contribute to design specifications for future sensory neuroprostheses.


Assuntos
Amputados , Eletrodos Implantados , Propriocepção/fisiologia , Desempenho Psicomotor/fisiologia , Percepção do Tato/fisiologia , Estimulação Elétrica Nervosa Transcutânea/métodos , Idoso , Membros Artificiais , Humanos , Masculino , Pessoa de Meia-Idade , Estimulação Luminosa/métodos , Estimulação Elétrica Nervosa Transcutânea/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...