Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 119(26): 262501, 2017 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-29328702

RESUMO

An experimentally constrained equation of state of neutron-rich matter is fundamental for the physics of nuclei and the astrophysics of neutron stars, mergers, core-collapse supernova explosions, and the synthesis of heavy elements. To this end, we investigate the potential of constraining the density dependence of the symmetry energy close to saturation density through measurements of neutron-removal cross sections in high-energy nuclear collisions of 0.4 to 1 GeV/nucleon. We show that the sensitivity of the total neutron-removal cross section is high enough so that the required accuracy can be reached experimentally with the recent developments of new detection techniques. We quantify two crucial points to minimize the model dependence of the approach and to reach the required accuracy: the contribution to the cross section from inelastic scattering has to be measured separately in order to allow a direct comparison of experimental cross sections to theoretical cross sections based on density functional theory and eikonal theory. The accuracy of the reaction model should be investigated and quantified by the energy and target dependence of various nucleon-removal cross sections. Our calculations explore the dependence of neutron-removal cross sections on the neutron skin of medium-heavy neutron-rich nuclei, and we demonstrate that the slope parameter L of the symmetry energy could be constrained down to ±10 MeV by such a measurement, with a 2% accuracy of the measured and calculated cross sections.

2.
Phys Rev Lett ; 109(10): 102501, 2012 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-23005283

RESUMO

Isochronous mass spectrometry has been applied to neutron-deficient 58Ni projectile fragments at the HIRFL-CSR facility in Lanzhou, China. Masses of a series of short-lived T(z)=-3/2 nuclides including 41Ti, 45Cr, 49Fe, and 53Ni have been measured with a precision of 20-40 keV. The new data enable us to test for the first time the isobaric multiplet mass equation (IMME) in fp-shell nuclei. We observe that the IMME is inconsistent with the generally accepted quadratic form for the A=53, T=3/2 quartet. We perform full space shell model calculations and compare them with the new experimental results.

3.
Phys Rev Lett ; 108(17): 172701, 2012 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-22680857

RESUMO

Clustering in low density nuclear matter has been investigated using the NIMROD multidetector at Texas A&M University. Thermal coalescence modes were employed to extract densities, ρ, and temperatures, T, for evolving systems formed in collisions of 47A MeV (40)Ar+(112)Sn, (124)Sn and (64)Zn+(112)Sn, (124)Sn. The yields of d, t, (3)He, and (4)He have been determined at ρ=0.002 to 0.03 nucleons/fm(3) and T=5 to 11 MeV. The experimentally derived equilibrium constants for α particle production are compared with those predicted by a number of astrophysical equations of state. The data provide important new constraints on the model calculations.

4.
Phys Rev Lett ; 108(6): 062702, 2012 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-22401061

RESUMO

In-medium binding energies and Mott points for d, t, 3He and α clusters in low-density nuclear matter have been determined at specific combinations of temperature and density in low-density nuclear matter produced in collisions of 47A MeV 40Ar and 64Zn projectiles with 112Sn and 124Sn target nuclei. The experimentally derived values of the in-medium modified binding energies are in good agreement with recent theoretical predictions based upon the implementation of Pauli blocking effects in a quantum statistical approach.

5.
Phys Rev Lett ; 104(20): 202501, 2010 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-20867023

RESUMO

The symmetry energy of nuclear matter is a fundamental ingredient in the investigation of exotic nuclei, heavy-ion collisions, and astrophysical phenomena. New data from heavy-ion collisions can be used to extract the free symmetry energy and the internal symmetry energy at subsaturation densities and temperatures below 10 MeV. Conventional theoretical calculations of the symmetry energy based on mean-field approaches fail to give the correct low-temperature, low-density limit that is governed by correlations, in particular, by the appearance of bound states. A recently developed quantum-statistical approach that takes the formation of clusters into account predicts symmetry energies that are in very good agreement with the experimental data. A consistent description of the symmetry energy is given that joins the correct low-density limit with quasiparticle approaches valid near the saturation density.

6.
Radiat Prot Dosimetry ; 126(1-4): 497-500, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17519242

RESUMO

Experiments were performed in Cave C of GSI (Gesellschaft für Schwerionenforschung) using the LAND (Large Area Neutron Detector) in combination with the deflection magnet ALADIN (A LArge DIpol magNet) in front of the LAND where charged particles and neutrons can be separated. This arrangement is used to create high-energetic neutron fields by irradiation of a thick lead target (5 cm) with deuteron beams with the energies of 500 or 800 MeV per nucleon. In break-up reactions the neutron is separated from the proton which is deflected in the magnetic field of the ALADIN. The produced neutron radiation, which has a pronounced peak at the nucleon energy, is used to measure the fluence response of the GSI neutron ball. A thermoluminescence (TL) based spherical neutron dosemeter was developed for the area monitoring for the quantity H(10) at high-energy accelerators. In the same experiment, the spectral neutron fluence Phi(E) is measured with the LAND in the energy range from 100 MeV to 1 GeV. The measured fluence responses are compared with results of FLUKA calculations and the corresponding fluence-to-dose conversion coefficients. The measured dosemeter responses are too high in comparison to the calculated ones (up to approximately 50%), the dosemeter reading gives dose values which are too high by a factor of 1.1-2.2 related to the corresponding fluence-to-dose conversion factors.


Assuntos
Nêutrons , Monitoramento de Radiação/instrumentação , Proteção Radiológica/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Doses de Radiação , Monitoramento de Radiação/métodos , Proteção Radiológica/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
7.
Phys Rev Lett ; 95(4): 042501, 2005 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-16090802

RESUMO

The FRS-ESR facility at GSI provides unique conditions for precision measurements of large areas on the nuclear mass surface in a single experiment. Values for masses of 604 neutron-deficient nuclides (30 < or = Z < or = 92) were obtained with a typical uncertainty of 30 microu. The masses of 114 nuclides were determined for the first time. The odd-even staggering (OES) of nuclear masses was systematically investigated for isotopic chains between the proton shell closures at Z = 50 and Z = 82. The results were compared with predictions of modern nuclear models. The comparison revealed that the measured trend of OES is not reproduced by the theories fitted to masses only. The spectral pairing gaps extracted from models adjusted to both masses, and density related observables of nuclei agree better with the experimental data.

8.
Phys Rev Lett ; 93(14): 142502, 2004 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-15524785

RESUMO

We study low-lying multipole strength in neutron-halo nuclei. The strength depends only on a few low-energy constants: the neutron separation energy, the asymptotic normalization coefficient of the bound-state wave function, and the scattering length that contains the information on the interaction in the continuum. The shape of the transition probability shows a characteristic dependence on few scaling parameters and the angular momenta. The total E1 strength is related to the root-mean-square radius of the neutron wave function in the ground state and shows corresponding scaling properties. We apply our approach to the E1 strength distribution of 11Be.

9.
Phys Rev Lett ; 90(23): 232501, 2003 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-12857251

RESUMO

An exclusive measurement of the Coulomb breakup of 8B into 7Be+p at 254A MeV allowed the study of the angular correlations of the breakup particles. These correlations demonstrate clearly that E1 multipolarity dominates and that E2 multipolarity can be neglected. By using a simple single-particle model for 8B and treating the breakup in first-order perturbation theory, we extract a zero-energy S factor of S17(0)=18.6+/-1.2+/-1.0 eV b, where the first error is experimental and the second one reflects the theoretical uncertainty in the extrapolation.

10.
Phys Rev A ; 53(4): 2547-2561, 1996 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-9913168
11.
Phys Rev C Nucl Phys ; 50(4): 2104-2115, 1994 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-9969888
12.
Phys Rev C Nucl Phys ; 49(1): 379-385, 1994 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-9969235
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...