Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Immunol ; 211(2): 274-286, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37272871

RESUMO

Cytokines that signal via STAT1 and STAT3 transcription factors instruct decisions affecting tissue homeostasis, antimicrobial host defense, and inflammation-induced tissue injury. To understand the coordination of these activities, we applied RNA sequencing, chromatin immunoprecipitation sequencing, and assay for transposase-accessible chromatin with high-throughput sequencing to identify the transcriptional output of STAT1 and STAT3 in peritoneal tissues from mice during acute resolving inflammation and inflammation primed to drive fibrosis. Bioinformatics focused on the transcriptional signature of the immunomodulatory cytokine IL-6 in both settings and examined how profibrotic IFN-γ-secreting CD4+ T cells altered the interpretation of STAT1 and STAT3 cytokine cues. In resolving inflammation, STAT1 and STAT3 cooperated to drive stromal gene expression affecting antimicrobial immunity and tissue homeostasis. The introduction of IFN-γ-secreting CD4+ T cells altered this transcriptional program and channeled STAT1 and STAT3 to a previously latent IFN-γ activation site motif in Alu-like elements. STAT1 and STAT3 binding to this conserved sequence revealed evidence of reciprocal cross-regulation and gene signatures relevant to pathophysiology. Thus, we propose that effector T cells retune the transcriptional output of IL-6 by shaping a regulatory interplay between STAT1 and STAT3 in inflammation.


Assuntos
Interleucina-6 , Células Th1 , Animais , Camundongos , Citocinas/metabolismo , Inflamação/metabolismo , Interleucina-6/metabolismo , Retroelementos , Fatores de Transcrição STAT/metabolismo , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT3/metabolismo , Células Th1/metabolismo
3.
Redox Biol ; 57: 102518, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36283174

RESUMO

Loss of innervation is a key driver of age associated muscle atrophy and weakness (sarcopenia). Our laboratory has previously shown that denervation induced atrophy is associated with the generation of mitochondrial hydroperoxides and lipid mediators produced downstream of cPLA2 and 12/15 lipoxygenase (12/15-LOX). To define the pathological impact of lipid hydroperoxides generated in denervation-induced atrophy in vivo, we treated mice with liproxstatin-1, a lipid hydroperoxide scavenger. We treated adult male mice with 5 mg/kg liproxstain-1 or vehicle one day prior to sciatic nerve transection and daily for 7 days post-denervation before tissue analysis. Liproxstatin-1 treatment protected gastrocnemius mass and fiber cross sectional area (∼40% less atrophy post-denervation in treated versus untreated mice). Mitochondrial hydroperoxide generation was reduced 80% in vitro and by over 65% in vivo by liproxstatin-1 treatment in denervated permeabilized muscle fibers and decreased the content of 4-HNE by ∼25% post-denervation. Lipidomic analysis revealed detectable levels of 25 oxylipins in denervated gastrocnemius muscle and significantly increased levels for eight oxylipins that are generated by metabolism of fatty acids through 12/15-LOX. Liproxstatin-1 treatment reduced the level of three of the eight denervation-induced oxylipins, specifically 15-HEPE, 13-HOTrE and 17-HDOHE. Denervation elevated protein degradation rates in muscle and treatment with liproxstatin-1 reduced rates of protein breakdown in denervated muscle. In contrast, protein synthesis rates were unchanged by denervation. Targeted proteomics revealed a number of proteins with altered expression after denervation but no effect of liproxstain-1. Transcriptomic analysis revealed 203 differentially expressed genes in denervated muscle from vehicle or liproxstatin-1 treated mice, including ER stress, nitric oxide signaling, Gαi signaling, glucocorticoid receptor signaling, and other pathways. Overall, these data suggest lipid hydroperoxides and oxylipins are key drivers of increased protein breakdown and muscle loss associated with denervation induced atrophy and a potential target for sarcopenia intervention.

4.
J Lipid Res ; 63(6): 100208, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35436499

RESUMO

The lipid envelope of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an essential component of the virus; however, its molecular composition is undetermined. Addressing this knowledge gap could support the design of antiviral agents as well as further our understanding of viral-host protein interactions, infectivity, pathogenicity, and innate immune system clearance. Lipidomics revealed that the virus envelope comprised mainly phospholipids (PLs), with some cholesterol and sphingolipids, and with cholesterol/phospholipid ratio similar to lysosomes. Unlike cellular membranes, procoagulant amino-PLs were present on the external side of the viral envelope at levels exceeding those on activated platelets. Accordingly, virions directly promoted blood coagulation. To investigate whether these differences could enable selective targeting of the viral envelope in vivo, we tested whether oral rinses containing lipid-disrupting chemicals could reduce infectivity. Products containing PL-disrupting surfactants (such as cetylpyridinium chloride) met European virucidal standards in vitro; however, components that altered the critical micelle concentration reduced efficacy, and products containing essential oils, povidone-iodine, or chlorhexidine were ineffective. This result was recapitulated in vivo, where a 30-s oral rinse with cetylpyridinium chloride mouthwash eliminated live virus in the oral cavity of patients with coronavirus disease 19 for at least 1 h, whereas povidone-iodine and saline mouthwashes were ineffective. We conclude that the SARS-CoV-2 lipid envelope i) is distinct from the host plasma membrane, which may enable design of selective antiviral approaches; ii) contains exposed phosphatidylethanolamine and phosphatidylserine, which may influence thrombosis, pathogenicity, and inflammation; and iii) can be selectively targeted in vivo by specific oral rinses.


Assuntos
COVID-19 , Antissépticos Bucais , Antivirais , Cetilpiridínio , Humanos , Lipídeos , Antissépticos Bucais/farmacologia , Povidona-Iodo , RNA Viral , SARS-CoV-2
5.
Nat Commun ; 13(1): 139, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013270

RESUMO

Oxylipins are potent biological mediators requiring strict control, but how they are removed en masse during infection and inflammation is unknown. Here we show that lipopolysaccharide (LPS) dynamically enhances oxylipin removal via mitochondrial ß-oxidation. Specifically, genetic or pharmacological targeting of carnitine palmitoyl transferase 1 (CPT1), a mitochondrial importer of fatty acids, reveal that many oxylipins are removed by this protein during inflammation in vitro and in vivo. Using stable isotope-tracing lipidomics, we find secretion-reuptake recycling for 12-HETE and its intermediate metabolites. Meanwhile, oxylipin ß-oxidation is uncoupled from oxidative phosphorylation, thus not contributing to energy generation. Testing for genetic control checkpoints, transcriptional interrogation of human neonatal sepsis finds upregulation of many genes involved in mitochondrial removal of long-chain fatty acyls, such as ACSL1,3,4, ACADVL, CPT1B, CPT2 and HADHB. Also, ACSL1/Acsl1 upregulation is consistently observed following the treatment of human/murine macrophages with LPS and IFN-γ. Last, dampening oxylipin levels by ß-oxidation is suggested to impact on their regulation of leukocyte functions. In summary, we propose mitochondrial ß-oxidation as a regulatory metabolic checkpoint for oxylipins during inflammation.


Assuntos
Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/metabolismo , Metabolismo dos Lipídeos/genética , Mitocôndrias/efeitos dos fármacos , Oxilipinas/metabolismo , Peritonite/genética , Sepse/genética , Acil-CoA Desidrogenase de Cadeia Longa/sangue , Acil-CoA Desidrogenase de Cadeia Longa/genética , Animais , Carnitina O-Palmitoiltransferase/sangue , Carnitina O-Palmitoiltransferase/genética , Coenzima A Ligases/sangue , Coenzima A Ligases/genética , Feminino , Regulação da Expressão Gênica , Humanos , Recém-Nascido , Interferon gama/farmacologia , Lipidômica/métodos , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Subunidade beta da Proteína Mitocondrial Trifuncional/sangue , Subunidade beta da Proteína Mitocondrial Trifuncional/genética , Oxirredução , Peritonite/sangue , Peritonite/induzido quimicamente , Peritonite/patologia , Células RAW 264.7 , Sepse/sangue , Sepse/patologia
6.
J Immunol ; 207(10): 2561-2569, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34635585

RESUMO

PGs are important proinflammatory lipid mediators, the significance of which is highlighted by the widespread and efficacious use of nonsteroidal anti-inflammatory drugs in the treatment of inflammation. 4-Octyl itaconate (4-OI), a derivative of the Krebs cycle-derived metabolite itaconate, has recently garnered much interest as an anti-inflammatory agent. In this article, we show that 4-OI limits PG production in murine macrophages stimulated with the TLR1/2 ligand Pam3CSK4. This decrease in PG secretion is due to a robust suppression of cyclooxygenase 2 (COX2) expression by 4-OI, with both mRNA and protein levels decreased. Dimethyl fumarate, a fumarate derivative used in the treatment of multiple sclerosis, with properties similar to itaconate, replicated the phenotype observed with 4-OI. We also demonstrate that the decrease in COX2 expression and inhibition of downstream PG production occurs in an NRF2-independent manner. Our findings provide a new insight into the potential of 4-OI as an anti-inflammatory agent and also identifies a novel anti-inflammatory function of dimethyl fumarate.


Assuntos
Anti-Inflamatórios/farmacologia , Fumarato de Dimetilo/farmacologia , Macrófagos/efeitos dos fármacos , Prostaglandinas/metabolismo , Succinatos/farmacologia , Animais , Ciclo-Oxigenase 2/biossíntese , Humanos , Macrófagos/metabolismo , Camundongos
7.
J Immunol ; 207(10): 2551-2560, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34635586

RESUMO

The protozoan parasite Trypanosoma brucei is the causative agent of the neglected tropical disease human African trypanosomiasis, otherwise known as sleeping sickness. Trypanosomes have evolved many immune-evasion mechanisms to facilitate their own survival, as well as prolonging host survival to ensure completion of the parasitic life cycle. A key feature of the bloodstream form of T. brucei is the secretion of aromatic keto acids, which are metabolized from tryptophan. In this study, we describe an immunomodulatory role for one of these keto acids, indole-3-pyruvate (I3P). We demonstrate that I3P inhibits the production of PGs in activated macrophages. We also show that, despite the reduction in downstream PGs, I3P augments the expression of cyclooxygenase (COX2). This increase in COX2 expression is mediated in part via inhibition of PGs relieving a negative-feedback loop on COX2. Activation of the aryl hydrocarbon receptor also participates in this effect. However, the increase in COX2 expression is of little functionality, as we also provide evidence to suggest that I3P targets COX activity. This study therefore details an evasion strategy by which a trypanosome-secreted metabolite potently inhibits macrophage-derived PGs, which might promote host and trypanosome survival.


Assuntos
Ciclo-Oxigenase 2/metabolismo , Indóis/metabolismo , Macrófagos/imunologia , Prostaglandinas/metabolismo , Tripanossomíase Africana/imunologia , Animais , Humanos , Evasão da Resposta Imune/imunologia , Indóis/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Prostaglandinas/imunologia , Trypanosoma brucei brucei/imunologia , Trypanosoma brucei brucei/metabolismo , Tripanossomíase Africana/metabolismo
8.
J Lipid Res ; 62: 100109, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34428433

RESUMO

Platelets promote tumor metastasis by inducing promalignant phenotypes in cancer cells and directly contributing to cancer-related thrombotic complications. Platelet-derived extracellular vesicles (EVs) can promote epithelial-mesenchymal transition (EMT) in cancer cells, which confers high-grade malignancy. 12S-hydroxyeicosatetraenoic acid (12-HETE) generated by platelet-type 12-lipoxygenase (12-LOX) is considered a key modulator of cancer metastasis through unknown mechanisms. In platelets, 12-HETE can be esterified into plasma membrane phospholipids (PLs), which drive thrombosis. Using cocultures of human platelets and human colon adenocarcinoma cells (line HT29) and LC-MS/MS, we investigated the impact of platelets on cancer cell biosynthesis of 12S-HETE and its esterification into PLs and whether platelet ability to transfer its molecular cargo might play a role. To this aim, we performed coculture experiments with CFSE[5-(and-6)-carboxyfluorescein diacetate, succinimidyl ester]-loaded platelets. HT29 cells did not generate 12S-HETE or express 12-LOX. However, they acquired the capacity to produce 12S-HETE mainly esterified in plasmalogen phospholipid forms following the uptake of platelet-derived medium-sized EVs (mEVs) expressing 12-LOX. 12-LOX was detected in plasma mEV of patients with adenomas/adenocarcinomas, implying their potential to deliver the protein to cancer cells in vivo. In cancer cells exposed to platelets, endogenous but not exogenous 12S-HETE contributed to changes in EMT gene expression, mitigated by three structurally unrelated 12-LOX inhibitors. In conclusion, we showed that platelets induce the generation of primarily esterified 12-HETE in colon cancer cells following mEV-mediated delivery of 12-LOX. The modification of cancer cell phospholipids by 12-HETE may functionally impact cancer cell biology and represent a novel target for anticancer agent development.


Assuntos
Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/biossíntese , Araquidonato 12-Lipoxigenase/metabolismo , Plaquetas/metabolismo , Neoplasias do Colo/metabolismo , Fosfolipídeos/metabolismo , Adulto , Neoplasias do Colo/patologia , Humanos , Pessoa de Meia-Idade , Células Tumorais Cultivadas , Adulto Jovem
9.
J Lipid Res ; 62: 100094, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34171322

RESUMO

A complex assembly of lipids including fatty acids, cholesterol, and ceramides is vital to the integrity of the mammalian epidermal barrier. The formation of this barrier requires oxidation of the substrate fatty acid, linoleic acid (LA), which is initiated by the enzyme 12R-lipoxygenase (LOX). In the epidermis, unoxidized LA is primarily found in long-chain acylceramides termed esterified omega-hydroxy sphingosine (EOS)/phytosphingosine/hydroxysphingosine (collectively EOx). The precise structure and localization of LOX-oxidized EOx in the human epidermis is unknown, as is their regulation in diseases such as psoriasis, one of the most common inflammatory diseases affecting the skin. Here, using precursor LC/MS/MS, we characterized multiple intermediates of EOx, including 9-HODE, 9,10-epoxy-13-HOME, and 9,10,13-TriHOME, in healthy human epidermis likely to be formed via the epidermal LOX pathways. The top layers of the skin contained more LA, 9-HODE, and 9,10,13-TriHOME EOSs, whereas 9,10-epoxy-13-HOME EOS was more prevalent deeper in the stratum corneum. In psoriatic lesions, levels of native EOx and free HODEs and HOMEs were significantly elevated, whereas oxidized species were generally reduced. A transcriptional network analysis of human psoriatic lesions identified significantly elevated expression of the entire biosynthetic/metabolic pathway for oxygenated ceramides, suggesting a regulatory function for EOx lipids in reconstituting epidermal integrity. The role of these new lipids in progression or resolution of psoriasis is currently unknown. We also discovered the central coordinated role of the zinc finger protein transcription factor, ZIC1, in driving the phenotype of this disease. In summary, long-chain oxygenated ceramide metabolism is dysregulated at the lipidomic level in psoriasis, likely driven by the transcriptional differences also observed, and we identified ZIC1 as a potential regulatory target for future therapeutic interventions.


Assuntos
Ceramidas/biossíntese , Ácido Linoleico/biossíntese , Lipidômica , Psoríase/metabolismo , Ceramidas/química , Ceramidas/genética , Humanos , Ácido Linoleico/química , Ácido Linoleico/genética , Estrutura Molecular , Psoríase/genética
10.
Sci Adv ; 7(7)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33579710

RESUMO

The gut microbiota fundamentally regulates intestinal homeostasis and disease partially through mechanisms that involve modulation of regulatory T cells (Tregs), yet how the microbiota-Treg cross-talk is physiologically controlled is incompletely defined. Here, we report that prostaglandin E2 (PGE2), a well-known mediator of inflammation, inhibits mucosal Tregs in a manner depending on the gut microbiota. PGE2 through its receptor EP4 diminishes Treg-favorable commensal microbiota. Transfer of the gut microbiota that was modified by PGE2-EP4 signaling modulates mucosal Treg responses and exacerbates intestinal inflammation. Mechanistically, PGE2-modified microbiota regulates intestinal mononuclear phagocytes and type I interferon signaling. Depletion of mononuclear phagocytes or deficiency of type I interferon receptor diminishes PGE2-dependent Treg inhibition. Together, our findings provide emergent evidence that PGE2-mediated disruption of microbiota-Treg communication fosters intestinal inflammation.


Assuntos
Microbioma Gastrointestinal , Linfócitos T Reguladores , Dinoprostona/farmacologia , Humanos , Inflamação , Receptores de Prostaglandina E Subtipo EP2
11.
PLoS One ; 15(10): e0240189, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33031441

RESUMO

Tissue factor (TF) is critical for the activation of blood coagulation. TF function is regulated by the amount of externalised phosphatidylserine (PS) and phosphatidylethanolamine (PE) on the surface of the cell in which it is expressed. We investigated the role PS and PE in fibroblast TF function. Fibroblasts expressed 6-9 x 104 TF molecules/cell but had low specific activity for FXa generation. We confirmed that this was associated with minimal externalized PS and PE and characterised for the first time the molecular species of PS/PE demonstrating that these differed from those found in platelets. Mechanical damage of fibroblasts, used to simulate vascular injury, increased externalized PS/PE and led to a 7-fold increase in FXa generation that was inhibited by annexin V and an anti-TF antibody. Platelet-derived extracellular vesicles (EVs), that did not express TF, supported minimal FVIIa-dependent FXa generation but substantially increased fibroblast TF activity. This enhancement in fibroblast TF activity could also be achieved using synthetic liposomes comprising 10% PS without TF. In conclusion, despite high levels of surface TF expression, healthy fibroblasts express low levels of external-facing PS and PE limiting their ability to generate FXa. Addition of platelet-derived TF-negative EVs or artificial liposomes enhanced fibroblast TF activity in a PS dependent manner. These findings contribute information about the mechanisms that control TF function in the fibroblast membrane.


Assuntos
Vesículas Extracelulares/metabolismo , Fibroblastos/metabolismo , Tromboplastina/metabolismo , Coagulação Sanguínea , Plaquetas/metabolismo , Linhagem Celular , Humanos , Lipossomos/metabolismo , Fosfatidiletanolaminas/metabolismo , Fosfatidilserinas/metabolismo , Tromboplastina/genética
12.
EMBO J ; 39(14): e103454, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32484988

RESUMO

The alarm cytokine interleukin-1ß (IL-1ß) is a potent activator of the inflammatory cascade following pathogen recognition. IL-1ß production typically requires two signals: first, priming by recognition of pathogen-associated molecular patterns leads to the production of immature pro-IL-1ß; subsequently, inflammasome activation by a secondary signal allows cleavage and maturation of IL-1ß from its pro-form. However, despite the important role of IL-1ß in controlling local and systemic inflammation, its overall regulation is still not fully understood. Here we demonstrate that peritoneal tissue-resident macrophages use an active inhibitory pathway, to suppress IL-1ß processing, which can otherwise occur in the absence of a second signal. Programming by the transcription factor Gata6 controls the expression of prostacyclin synthase, which is required for prostacyclin production after lipopolysaccharide stimulation and optimal induction of IL-10. In the absence of secondary signal, IL-10 potently inhibits IL-1ß processing, providing a previously unrecognized control of IL-1ß in tissue-resident macrophages.


Assuntos
Epoprostenol/imunologia , Interleucina-10/imunologia , Interleucina-1beta/imunologia , Macrófagos Peritoneais/imunologia , Animais , Epoprostenol/genética , Fator de Transcrição GATA6/genética , Fator de Transcrição GATA6/imunologia , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Interleucina-10/genética , Interleucina-1beta/genética , Macrófagos Peritoneais/patologia , Camundongos , Camundongos Transgênicos
13.
Circ Genom Precis Med ; 13(3): e002806, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32396387

RESUMO

BACKGROUND: Common chromosome 9p21 single nucleotide polymorphisms (SNPs) increase coronary heart disease risk, independent of traditional lipid risk factors. However, lipids comprise large numbers of structurally related molecules not measured in traditional risk measurements, and many have inflammatory bioactivities. Here, we applied lipidomic and genomic approaches to 3 model systems to characterize lipid metabolic changes in common Chr9p21 SNPs, which confer ≈30% elevated coronary heart disease risk associated with altered expression of ANRIL, a long ncRNA. METHODS: Untargeted and targeted lipidomics was applied to plasma from NPHSII (Northwick Park Heart Study II) homozygotes for AA or GG in rs10757274, followed by correlation and network analysis. To identify candidate genes, transcriptomic data from shRNA downregulation of ANRIL in HEK-293 cells was mined. Transcriptional data from vascular smooth muscle cells differentiated from induced pluripotent stem cells of individuals with/without Chr9p21 risk, nonrisk alleles, and corresponding knockout isogenic lines were next examined. Last, an in-silico analysis of miRNAs was conducted to identify how ANRIL might control lysoPL (lysophosphospholipid)/lysoPA (lysophosphatidic acid) genes. RESULTS: Elevated risk GG correlated with reduced lysoPLs, lysoPA, and ATX (autotaxin). Five other risk SNPs did not show this phenotype. LysoPL-lysoPA interconversion was uncoupled from ATX in GG plasma, suggesting metabolic dysregulation. Significantly altered expression of several lysoPL/lysoPA metabolizing enzymes was found in HEK cells lacking ANRIL. In the vascular smooth muscle cells data set, the presence of risk alleles associated with altered expression of several lysoPL/lysoPA enzymes. Deletion of the risk locus reversed the expression of several lysoPL/lysoPA genes to nonrisk haplotype levels. Genes that were altered across both cell data sets were DGKA, MBOAT2, PLPP1, and LPL. The in-silico analysis identified 4 ANRIL-regulated miRNAs that control lysoPL genes as miR-186-3p, miR-34a-3p, miR-122-5p, and miR-34a-5p. CONCLUSIONS: A Chr9p21 risk SNP associates with complex alterations in immune-bioactive phospholipids and their metabolism. Lipid metabolites and genomic pathways associated with coronary heart disease pathogenesis in Chr9p21 and ANRIL-associated disease are demonstrated.


Assuntos
Cromossomos Humanos Par 9/genética , Doença das Coronárias , Lisofosfolipídeos , Diester Fosfórico Hidrolases , Polimorfismo de Nucleotídeo Único , Cromossomos Humanos Par 9/metabolismo , Doença das Coronárias/genética , Doença das Coronárias/metabolismo , Células HEK293 , Humanos , Lisofosfolipídeos/genética , Lisofosfolipídeos/metabolismo , Masculino , Pessoa de Meia-Idade , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo
14.
Biochim Biophys Acta Mol Basis Dis ; 1865(9): 2538-2550, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31202985

RESUMO

Atherosclerosis and its complications are responsible for one in three global deaths. Nutraceuticals show promise in the prevention and treatment of atherosclerosis but require an indepth understanding of the mechanisms underlying their actions. A previous study showed that the omega-6 fatty acid, dihomo-γ-linolenic acid (DGLA), attenuated atherosclerosis in the apolipoprotein E deficient mouse model system. However, the mechanisms underlying such protective effects of DGLA are poorly understood and were therefore investigated. We show that DGLA attenuates chemokine-driven monocytic migration together with foam cell formation and the expression of key pro-atherogenic genes induced by three pro-inflammatory cytokines in human macrophages. The effect of DGLA on interferon-γ signaling was mediated via inhibition of signal transducer and activator of transcription-1 phosphorylation on serine 727. In relation to anti-foam cell action, DGLA inhibits modified LDL uptake by both macropinocytosis and receptor-mediated endocytosis, the latter by reduction in expression of two key scavenger receptors (SR-A and CD36), and stimulates cholesterol efflux from foam cells. DGLA also improves macrophage mitochondrial bioenergetic profile by decreasing proton leak. Gamma-linolenic acid and prostaglandin E1, upstream precursor and key metabolite respectively of DGLA, also acted in an anti-atherogenic manner. The actions of DGLA extended to other key atherosclerosis-associated cell types with attenuation of endothelial cell proliferation and migration of smooth muscle cells in response to platelet-derived growth factor. This study provides novel insights into the molecular mechanisms underlying the anti-atherogenic actions of DGLA and supports further assessments on its protective effects on plaque regression in vivo and in human trials.


Assuntos
Ácido 8,11,14-Eicosatrienoico/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Animais , Aterosclerose/metabolismo , Aterosclerose/patologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Citocinas/metabolismo , Células Espumosas/citologia , Células Espumosas/metabolismo , Humanos , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Interleucina-1beta/farmacologia , Lipopolissacarídeos/farmacologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Monócitos/citologia
15.
J Biol Chem ; 294(23): 9225-9238, 2019 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-31061099

RESUMO

Eicosanoids are critical mediators of fever, pain, and inflammation generated by immune and tissue cells. We recently described a new bioactive eicosanoid generated by cyclooxygenase-1 (COX-1) turnover during platelet activation that can stimulate human neutrophil integrin expression. On the basis of mass spectrometry (MS/MS and MS3), stable isotope labeling, and GC-MS analysis, we previously proposed a structure of 8-hydroxy-9,11-dioxolane eicosatetraenoic acid (DXA3). Here, we achieved enzymatic synthesis and 1H NMR characterization of this compound with results in conflict with the previously proposed structural assignment. Accordingly, by using LC-MS, we screened autoxidation reactions of 11-hydroperoxy-eicosatetraenoic acid (11-HpETE) and thereby identified a candidate sharing the precise reverse-phase chromatographic and MS characteristics of the platelet product. We optimized these methods to increase yield, allowing full structural analysis by 1H NMR. The revised assignment is presented here as 8,9-11,12-diepoxy-13-hydroxyeicosadienoic acid, abbreviated to 8,9-11,12-DiEp-13-HEDE or DiEpHEDE, substituted for the previous name DXA3 We found that in platelets, the lipid likely forms via dioxolane ring opening with rearrangement to the diepoxy moieties followed by oxygen insertion at C13. We present its enzymatic biosynthetic pathway and MS/MS fragmentation pattern and, using the synthetic compound, demonstrate that it has bioactivity. For the platelet lipid, we estimate 16 isomers based on our current knowledge (and four isomers for the synthetic lipid). Determining the exact isomeric structure of the platelet lipid remains to be undertaken.


Assuntos
Plaquetas/metabolismo , Eicosanoides/química , Ácidos Hidroxieicosatetraenoicos/química , Cromatografia Líquida de Alta Pressão , Ciclo-Oxigenase 1/metabolismo , Eicosanoides/análise , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Ácidos Hidroxieicosatetraenoicos/análise , Ácidos Hidroxieicosatetraenoicos/síntese química , Isomerismo , Espectroscopia de Ressonância Magnética , Conformação Molecular , Espectrometria de Massas em Tandem
16.
Proc Natl Acad Sci U S A ; 116(16): 8038-8047, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30944221

RESUMO

Abdominal aortic aneurysm (AAA) is an inflammatory vascular disease with high mortality and limited treatment options. How blood lipids regulate AAA development is unknown. Here lipidomics and genetic models demonstrate a central role for procoagulant enzymatically oxidized phospholipids (eoxPL) in regulating AAA. Specifically, through activating coagulation, eoxPL either promoted or inhibited AAA depending on tissue localization. Ang II administration to ApoE-/- mice increased intravascular coagulation during AAA development. Lipidomics revealed large numbers of eoxPL formed within mouse and human AAA lesions. Deletion of eoxPL-generating enzymes (Alox12 or Alox15) or administration of the factor Xa inhibitor rivaroxaban significantly reduced AAA. Alox-deficient mice displayed constitutively dysregulated hemostasis, including a consumptive coagulopathy, characterized by compensatory increase in prothrombotic aminophospholipids (aPL) in circulating cell membranes. Intravenously administered procoagulant PL caused clotting factor activation and depletion, induced a bleeding defect, and significantly reduced AAA development. These data suggest that Alox deletion reduces AAA through diverting coagulation away from the vessel wall due to eoxPL deficiency, instead activating clotting factor consumption and depletion in the circulation. In mouse whole blood, ∼44 eoxPL molecular species formed within minutes of clot initiation. These were significantly elevated with ApoE-/- deletion, and many were absent in Alox-/- mice, identifying specific eoxPL that modulate AAA. Correlation networks demonstrated eoxPL belonged to subfamilies defined by oxylipin composition. Thus, procoagulant PL regulate AAA development through complex interactions with clotting factors. Modulation of the delicate balance between bleeding and thrombosis within either the vessel wall or circulation was revealed that can either drive or prevent disease development.


Assuntos
Aorta Abdominal/fisiopatologia , Aneurisma da Aorta Abdominal , Fosfolipídeos , Angiotensinas/metabolismo , Animais , Aneurisma da Aorta Abdominal/genética , Aneurisma da Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/fisiopatologia , Fatores de Coagulação Sanguínea/genética , Fatores de Coagulação Sanguínea/metabolismo , Modelos Animais de Doenças , Feminino , Lipoxigenase/genética , Lipoxigenase/metabolismo , Masculino , Camundongos , Camundongos Knockout para ApoE , Fosfolipídeos/genética , Fosfolipídeos/metabolismo
17.
JCI Insight ; 3(6)2018 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-29563336

RESUMO

Hemostatic defects are treated using coagulation factors; however, clot formation also requires a procoagulant phospholipid (PL) surface. Here, we show that innate immune cell-derived enzymatically oxidized phospholipids (eoxPL) termed hydroxyeicosatetraenoic acid-phospholipids (HETE-PLs) restore hemostasis in human and murine conditions of pathological bleeding. HETE-PLs abolished blood loss in murine hemophilia A and enhanced coagulation in factor VIII- (FVIII-), FIX-, and FX-deficient human plasma . HETE-PLs were decreased in platelets from patients after cardiopulmonary bypass (CPB). To explore molecular mechanisms, the ability of eoxPL to stimulate individual isolated coagulation factor/cofactor complexes was tested in vitro. Extrinsic tenase (FVIIa/tissue factor [TF]), intrinsic tenase (FVIIIa/FIXa), and prothrombinase (FVa/FXa) all were enhanced by both HETE-PEs and HETE-PCs, suggesting a common mechanism involving the fatty acid moiety. In plasma, 9-, 15-, and 12-HETE-PLs were more effective than 5-, 11-, or 8-HETE-PLs, indicating positional isomer specificity. Coagulation was enhanced at lower lipid/factor ratios, consistent with a more concentrated area for protein binding. Surface plasmon resonance confirmed binding of FII and FX to HETE-PEs. HETE-PEs increased membrane curvature and thickness, but not surface charge or homogeneity, possibly suggesting increased accessibility to cations/factors. In summary, innate immune-derived eoxPL enhance calcium-dependent coagulation factor function, and their potential utility in bleeding disorders is proposed.


Assuntos
Fatores de Coagulação Sanguínea/metabolismo , Hemorragia/enzimologia , Hemorragia/metabolismo , Fosfolipídeos/metabolismo , Trombina/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Coagulação Sanguínea , Fatores de Coagulação Sanguínea/genética , Plaquetas , Ponte Cardiopulmonar/efeitos adversos , Proteínas de Transporte , Cisteína Endopeptidases , Fator IX/genética , Fator VIII/genética , Fator VIIa/metabolismo , Fator X/genética , Hemofilia A , Hemorragia/prevenção & controle , Hemostasia , Humanos , Ácidos Hidroxieicosatetraenoicos , Lipoproteínas/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Proteínas de Neoplasias , Ressonância de Plasmônio de Superfície , Tromboplastina/antagonistas & inibidores , Tromboplastina/metabolismo
18.
Sci Signal ; 10(507)2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-29184033

RESUMO

Blood coagulation functions as part of the innate immune system by preventing bacterial invasion, and it is critical to stopping blood loss (hemostasis). Coagulation involves the external membrane surface of activated platelets and leukocytes. Using lipidomic, genetic, biochemical, and mathematical modeling approaches, we found that enzymatically oxidized phospholipids (eoxPLs) generated by the activity of leukocyte or platelet lipoxygenases (LOXs) were required for normal hemostasis and promoted coagulation factor activities in a Ca2+- and phosphatidylserine (PS)-dependent manner. In wild-type mice, hydroxyeicosatetraenoic acid-phospholipids (HETE-PLs) enhanced coagulation and restored normal hemostasis in clotting-deficient animals genetically lacking p12-LOX or 12/15-LOX activity. Murine platelets generated 22 eoxPL species, all of which were missing in the absence of p12-LOX. Humans with the thrombotic disorder antiphospholipid syndrome (APS) had statistically significantly increased HETE-PLs in platelets and leukocytes, as well as greater HETE-PL immunoreactivity, than healthy controls. HETE-PLs enhanced membrane binding of the serum protein ß2GP1 (ß2-glycoprotein 1), an event considered central to the autoimmune reactivity responsible for APS symptoms. Correlation network analysis of 47 platelet eoxPL species in platelets from APS and control subjects identified their enzymatic origin and revealed a complex network of regulation, with the abundance of 31 p12-LOX-derived eoxPL molecules substantially increased in APS. In summary, circulating blood cells generate networks of eoxPL molecules, including HETE-PLs, which change membrane properties to enhance blood coagulation and contribute to the excessive clotting and immunoreactivity of patients with APS.


Assuntos
Fatores de Coagulação Sanguínea/metabolismo , Cálcio/metabolismo , Membrana Celular/metabolismo , Hemostasia , Fosfolipídeos/metabolismo , Ativação Plaquetária , Adulto , Idoso , Animais , Síndrome Antifosfolipídica/sangue , Síndrome Antifosfolipídica/enzimologia , Coagulação Sanguínea , Membrana Celular/ultraestrutura , Estudos de Coortes , Modelos Animais de Doenças , Feminino , Humanos , Ácidos Hidroxieicosatetraenoicos/análise , Ácidos Hidroxieicosatetraenoicos/metabolismo , Lipoxigenases/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Modelos Teóricos , Fosfolipídeos/análise , Trombose Venosa/sangue , Trombose Venosa/induzido quimicamente , Trombose Venosa/enzimologia , beta 2-Glicoproteína I/metabolismo
19.
Am J Respir Cell Mol Biol ; 57(6): 692-701, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28723225

RESUMO

Type 2-associated goblet cell hyperplasia and mucus hypersecretion are well known features of asthma. 15-Lipoxygenase-1 (15LO1) is induced by the type 2 cytokine IL-13 in human airway epithelial cells (HAECs) in vitro and is increased in fresh asthmatic HAECs ex vivo. 15LO1 generates a variety of products, including 15-hydroxyeicosatetraenoic acid (15-HETE), 15-HETE-phosphatidylethanolamine (15-HETE-PE), and 13-hydroxyoctadecadienoic acid (13-HODE). In this study, we investigated the 15LO1 metabolite profile at baseline and after IL-13 treatment, as well as its influence on goblet cell differentiation in HAECs. Primary HAECs obtained from bronchial brushings of asthmatic and healthy subjects were cultured under air-liquid interface culture supplemented with arachidonic acid and linoleic acid (10 µM each) and exposed to IL-13 for 7 days. Short interfering RNA transfection and 15LO1 inhibition were applied to suppress 15LO1 expression and activity. IL-13 stimulation induced expression of 15LO1 and preferentially generated 15-HETE-PE in vitro, both of which persisted after removal of IL-13. 15LO1 inhibition (by short interfering RNA and chemical inhibitor) decreased IL-13-induced forkhead box protein A3 (FOXA3) expression and enhanced FOXA2 expression. These changes were associated with reductions in both mucin 5AC and periostin. Exogenous 15-HETE-PE stimulation (alone) recapitulated IL-13-induced FOXA3, mucin 5AC, and periostin expression. The results of this study confirm the central importance of 15LO1 and its primary product, 15-HETE-PE, for epithelial cell remodeling in HAECs.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Caliciformes/metabolismo , Ácidos Hidroxieicosatetraenoicos/biossíntese , Interleucina-13/farmacologia , Remodelação das Vias Aéreas/efeitos dos fármacos , Araquidonato 15-Lipoxigenase/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Fator 3-beta Nuclear de Hepatócito/biossíntese , Fator 3-gama Nuclear de Hepatócito/biossíntese , Humanos , Ácidos Linoleicos/biossíntese , Mucina-5AC/biossíntese
20.
Wellcome Open Res ; 2: 1, 2017 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-28239665

RESUMO

Background. The myeloid enzyme 12/15-lipoxygenase (LOX), which generates bioactive oxidized lipids, has been implicated in numerous inflammatory diseases, with several studies demonstrating an improvement in pathology in mice lacking the enzyme. However, the ability of 12/15-LOX to directly regulate B cell function has not been studied. Methods. The influence of 12/15-LOX on B cell phenotype and function, and IgM generation, was compared using wildtype (WT) and 12/15-LOX (Alox15-/-) deficient mice. The proliferative and functional capacity of splenic CD19+ B cells was measured in vitro in response to various toll-like receptor agonists. Results. WT and Alox15-/- displayed comparable responses. However in vivo, splenic B cell numbers were significantly elevated in Alox15-/- mice with a corresponding elevation in titres of total IgM in lung, gut and serum, and lower serum IgM directed against the 12/15-LOX product, 12-hydroxyeicosatetraenoic acid-phosphatidylethanolamine (HETE-PE). Discussion. Myeloid 12/15-LOX can regulate B cell numbers and innate immune antibody levels in vivo, potentially contributing to its ability to regulate inflammatory disease. Furthermore, the alterations seen in 12/15-LOX deficiency likely result from changes in the equilibrium of the immune system that develop from birth. Further studies in disease models are warranted to elucidate the contribution of 12/15-LOX mediated alterations in B cell numbers and innate immune antibody generation to driving inflammation in vivo.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...