Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(37): 33255-33265, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37744782

RESUMO

In this study, we report a facile one-step chemical method to synthesize reduced titanium dioxide (TiO2) nanotube arrays (NTAs) with point defects. Treatment with NaBH4 introduces oxygen vacancies (OVs) in the TiO2 lattice. Chemical analysis and optical studies indicate that the OV density can be significantly increased by changing reduction time treatment, leading to higher optical transmission of the TiO2 NTAs and retarded carrier recombination in the photoelectrochemical process. A cathodoluminescence (CL) study of reduced TiO2 (TiO2-x) NTAs revealed that OVs contribute significantly to the emission bands in the visible range. It was found that the TiO2 NTAs reduced for a longer duration exhibited a higher concentration of OVs. A typical CL spectrum of TiO2 was deconvoluted to four Gaussian components, assigned to F, F+, and Ti3+ centers. X-ray photoelectron spectroscopy measurements were used to support the change in the surface chemical bonding and electronic valence band position in TiO2. Electron paramagnetic resonance spectra confirmed the presence of OVs in the TiO2-x sample. The prepared TiO2-x NTAs show an enhanced photocurrent for water splitting due to pronounced light absorption in the visible region, enhanced electrical conductivity, and improved charge transportation.

2.
ACS Omega ; 8(24): 21605-21617, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37360499

RESUMO

Oxygen vacancies (OVs) are one of the most critical factors that enhance the electrical and catalytic characteristics of metal oxide-based photoelectrodes. In this work, a simple procedure was applied to prepare reduced TiO2 nanotube arrays (NTAs) (TiO2-x) via a one-step reduction method using NaBH4. A series of characterization techniques were used to study the structural, optical, and electronic properties of TiO2-x NTAs. X-ray photoelectron spectroscopy confirmed the presence of defects in TiO2-x NTAs. Photoacoustic measurements were used to estimate the electron-trap density in the NTAs. Photoelectrochemical studies show that the photocurrent density of TiO2-x NTAs was nearly 3 times higher than that of pristine TiO2. It was found that increasing OVs in TiO2 affects the surface recombination centers, enhances electrical conductivity, and improves charge transport. For the first time, a TiO2-x photoanode was used in the photoelectrochemical (PEC) degradation of a textile dye (basic blue 41, B41) and ibuprofen (IBF) pharmaceutical using in situ generated reactive chlorine species (RCS). Liquid chromatography coupled with mass spectrometry was used to study the mechanisms for the degradation of B41 and IBF. Phytotoxicity tests of B41 and IBF solutions were performed using Lepidium sativum L. to evaluate the potential acute toxicity before and after the PEC treatment. The present work provides efficient PEC degradation of the B41 dye and IBF in the presence of RCS without generating harmful products.

3.
Nanomaterials (Basel) ; 12(21)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36364676

RESUMO

The present paper reports on MnCoFeO4 spinels with peculiar composition and their catalytic behavior in the reactions of complete oxidation of hydrocarbons. The samples were synthesized by solution combustion method with sucrose and citric acid as fuels. All samples were characterized by powder X-ray diffraction, N2-physisorption, scanning electron microscopy, thermal analysis, X-ray photoelectron spectroscopy, and Mössbauer spectroscopy. The catalytic properties of the spinels with Mn:Co:Fe = 1:1:1 composition were studied in reactions of complete oxidation of methane, propane, butane, and propane in the presence of water as model pollutants. Both prepared catalysts are nanosized materials. The slight difference in the compositions, structure, and morphology is due to the type of fuel used in the synthesis reaction. The spinel, prepared with sucrose, shows a higher specific surface area, pore volume, higher amount of small particles fraction, higher thermal stability, and as a result, more exposed active sites on the sample surface that lead to higher catalytic activity in the studied oxidation reactions. After the catalytic tests, both samples do not undergo any substantial phase and morphological changes; thus, they could be applied in low-temperature hydrocarbon oxidation reactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...