Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Neuromuscul Disord ; 35: 29-32, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38219297

RESUMO

Patients with myopathies caused by pathogenic variants in tropomyosin genes TPM2 and TPM3 usually have muscle hypotonia and weakness, their muscle biopsies often showing fibre size disproportion and nemaline bodies. Here, we describe a series of patients with hypercontractile molecular phenotypes, high muscle tone, and mostly non-specific myopathic biopsy findings without nemaline bodies. Three of the patients had trismus, whilst in one patient, the distal joints of her fingers flexed on extension of the wrists. In one biopsy from a patient with a rare TPM3 pathogenic variant, cores and minicores were observed, an unusual finding in TPM3-caused myopathy. The variants alter conserved contact sites between tropomyosin and actin.


Assuntos
Doenças Musculares , Miopatias da Nemalina , Humanos , Feminino , Músculo Esquelético/patologia , Tropomiosina/genética , Doenças Musculares/patologia , Hipertonia Muscular/patologia , Fenótipo , Miopatias da Nemalina/genética , Miopatias da Nemalina/patologia , Mutação
3.
Neurogenetics ; 24(4): 291-301, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37606798

RESUMO

Charcot-Marie-Tooth disease (CMT) is a heterogeneous set of hereditary neuropathies whose genetic causes are not fully understood. Here, we characterize three previously unknown variants in PMP22 and assess their effect on the recently described potential CMT biomarkers' growth differentiation factor 15 (GDF15) and neurofilament light (NFL): first, a heterozygous PMP22 c.178G > A (p.Glu60Lys) in one mother-son pair with adult-onset mild axonal neuropathy. The variant led to abnormal splicing, confirmed in fibroblasts by reverse transcription PCR. Second, a de novo PMP22 c.35A > C (p.His12Pro), and third, a heterozygous 3.2 kb deletion predicting loss of exon 4. The latter two had severe CMT and ultrasonography showing strong nerve enlargement similar to a previous case of exon 4 loss due to a larger deletion. We further studied patients with PMP22 duplication (CMT1A) finding slightly elevated plasma NFL, as measured by the single molecule array immunoassay (SIMOA). In addition, plasma GDF15, as measured by ELISA, correlated with symptom severity for CMT1A. However, in the severely affected individuals with PMP22 exon 4 deletion or p.His12Pro, these biomarkers were within the range of variability of CMT1A and controls, although they had more pronounced nerve hypertrophy. This study adds p.His12Pro and confirms PMP22 exon 4 deletion as causes of severe CMT, whereas the previously unknown splice variant p.Glu60Lys leads to mild axonal neuropathy. Our results suggest that GDF15 and NFL do not distinguish CMT1A from advanced hypertrophic neuropathy caused by rare PMP22 variants.


Assuntos
Doença de Charcot-Marie-Tooth , Neuropatia Hereditária Motora e Sensorial , Adulto , Humanos , Fator 15 de Diferenciação de Crescimento/genética , Filamentos Intermediários , Proteínas da Mielina/genética , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/diagnóstico , Biomarcadores
4.
J Inherit Metab Dis ; 46(5): 817-823, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37410890

RESUMO

Mitochondrial aminoacyl-tRNA synthetases (mtARS) are enzymes critical for the first step of mitochondrial protein synthesis by charging mitochondrial tRNAs with their cognate amino acids. Pathogenic variants in all 19 nuclear mtARS genes are now recognized as causing recessive mitochondrial diseases. Most mtARS disorders affect the nervous system, but the phenotypes range from multisystem diseases to tissue-specific manifestations. However, the mechanisms behind the tissue specificities are poorly understood, and challenges remain in obtaining accurate disease models for developing and testing treatments. Here, some of the currently existing disease models that have increased our understanding of mtARS defects are discussed.


Assuntos
Aminoacil-tRNA Sintetases , Doenças Mitocondriais , Humanos , Aminoacil-tRNA Sintetases/genética , Mitocôndrias/patologia , Doenças Mitocondriais/genética , Doenças Mitocondriais/patologia , RNA de Transferência/genética , Fenótipo
5.
Cell Calcium ; 114: 102782, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37481871

RESUMO

Inositol 1,4,5-trisphosphate receptors (IP3Rs) are ER Ca2+-release channels that control a broad set of cellular processes. Animal models lacking IP3Rs in different combinations display severe developmental phenotypes. Given the importance of IP3Rs in human diseases, we investigated their role in human induced pluripotent stem cells (hiPSC) by developing single IP3R and triple IP3R knockouts (TKO). Genome edited TKO-hiPSC lacking all three IP3R isoforms, IP3R1, IP3R2, IP3R3, failed to generate Ca2+ signals in response to agonists activating GPCRs, but retained stemness and pluripotency. Steady state metabolite profiling and flux analysis of TKO-hiPSC indicated distinct alterations in tricarboxylic acid cycle metabolites consistent with a deficiency in their pyruvate utilization via pyruvate dehydrogenase, shifting towards pyruvate carboxylase pathway. These results demonstrate that IP3Rs are not essential for hiPSC identity and pluripotency but regulate mitochondrial metabolism. This set of knockout hiPSC is a valuable resource for investigating IP3Rs in human cell types of interest.

6.
Proc Natl Acad Sci U S A ; 120(30): e2210599120, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37463214

RESUMO

Cardiolipin (CL) is an essential phospholipid for mitochondrial structure and function. Here, we present a small mitochondrial protein, NERCLIN, as a negative regulator of CL homeostasis and mitochondrial ultrastructure. Primate-specific NERCLIN is expressed ubiquitously from the GRPEL2 locus on a tightly regulated low level. NERCLIN overexpression severely disrupts mitochondrial cristae structure and induces mitochondrial fragmentation. Proximity labeling and immunoprecipitation analysis suggested interactions of NERCLIN with CL synthesis and prohibitin complexes on the matrix side of the inner mitochondrial membrane. Lipid analysis indicated that NERCLIN regulates mitochondrial CL content. Furthermore, NERCLIN is responsive to heat stress ensuring OPA1 processing and cell survival. Thus, we propose that NERCLIN contributes to the stress-induced adaptation of mitochondrial dynamics. Our findings add NERCLIN to the group of recently identified small mitochondrial proteins with important regulatory functions.


Assuntos
Cardiolipinas , Proteínas Mitocondriais , Animais , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Cardiolipinas/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Homeostase
7.
Commun Biol ; 5(1): 1060, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36198903

RESUMO

Effective protein import from cytosol is critical for mitochondrial functions and metabolic regulation. We describe here the mammalian muscle-specific and systemic consequences to disrupted mitochondrial matrix protein import by targeted deletion of the mitochondrial HSP70 co-chaperone GRPEL1. Muscle-specific loss of GRPEL1 caused rapid muscle atrophy, accompanied by shut down of oxidative phosphorylation and mitochondrial fatty acid oxidation, and excessive triggering of proteotoxic stress responses. Transcriptome analysis identified new responders to mitochondrial protein import toxicity, such as the neurological disease-linked intermembrane space protein CHCHD10. Besides communication with ER and nucleus, we identified crosstalk of distressed mitochondria with peroxisomes, in particular the induction of peroxisomal Acyl-CoA oxidase 2 (ACOX2), which we propose as an ATF4-regulated peroxisomal marker of integrated stress response. Metabolic profiling indicated fatty acid enrichment in muscle, a shift in TCA cycle intermediates in serum and muscle, and dysregulated bile acids. Our results demonstrate the fundamental importance of GRPEL1 and provide a robust model for detecting mammalian inter-organellar and systemic responses to impaired mitochondrial matrix protein import and folding.


Assuntos
Ácidos Graxos , Músculo Esquelético , Animais , Ácidos e Sais Biliares/metabolismo , Ácidos Graxos/metabolismo , Mamíferos , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Músculo Esquelético/metabolismo , Transporte Proteico
8.
Dis Model Mech ; 15(10)2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36285626

RESUMO

Isolated populations have been valuable for the discovery of rare monogenic diseases and their causative genetic variants. Finnish disease heritage (FDH) is an example of a group of hereditary monogenic disorders caused by single major, usually autosomal-recessive, variants enriched in the population due to several past genetic drift events. Interestingly, distinct subpopulations have remained in Finland and have maintained their unique genetic repertoire. Thus, FDH diseases have persisted, facilitating vigorous research on the underlying molecular mechanisms and development of treatment options. This Review summarizes the current status of FDH, including the most recently discovered FDH disorders, and introduces a set of other recently identified diseases that share common features with the traditional FDH diseases. The Review also discusses a new era for population-based studies, which combine various forms of big data to identify novel genotype-phenotype associations behind more complex conditions, as exemplified here by the FinnGen project. In addition to the pathogenic variants with an unequivocal causative role in the disease phenotype, several risk alleles that correlate with certain phenotypic features have been identified among the Finns, further emphasizing the broad value of studying genetically isolated populations.


Assuntos
Pesquisa Translacional Biomédica , Finlândia/epidemiologia , Fenótipo
9.
BMC Biol ; 20(1): 112, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35550069

RESUMO

BACKGROUND: MAPK/ERK signaling is a well-known mediator of extracellular stimuli controlling intracellular responses to growth factors and mechanical cues. The critical requirement of MAPK/ERK signaling for embryonic stem cell maintenance is demonstrated, but specific functions in progenitor regulation during embryonic development, and in particular kidney development remain largely unexplored. We previously demonstrated MAPK/ERK signaling as a key regulator of kidney growth through branching morphogenesis and normal nephrogenesis where it also regulates progenitor expansion. Here, we performed RNA sequencing-based whole-genome expression analysis to identify transcriptional MAPK/ERK targets in two distinct renal populations: the ureteric bud epithelium and the nephron progenitors. RESULTS: Our analysis revealed a large number (5053) of differentially expressed genes (DEGs) in nephron progenitors and significantly less (1004) in ureteric bud epithelium, reflecting likely heterogenicity of cell types. The data analysis identified high tissue-specificity, as only a fraction (362) of MAPK/ERK targets are shared between the two tissues. Tissue-specific MAPK/ERK targets participate in the regulation of mitochondrial energy metabolism in nephron progenitors, which fail to maintain normal mitochondria numbers in the MAPK/ERK-deficient tissue. In the ureteric bud epithelium, a dramatic decline in progenitor-specific gene expression was detected with a simultaneous increase in differentiation-associated genes, which was not observed in nephron progenitors. Our experiments in the genetic model of MAPK/ERK deficiency provide evidence that MAPK/ERK signaling in the ureteric bud maintains epithelial cells in an undifferentiated state. Interestingly, the transcriptional targets shared between the two tissues studied are over-represented by histone genes, suggesting that MAPK/ERK signaling regulates cell cycle progression and stem cell maintenance through chromosome condensation and nucleosome assembly. CONCLUSIONS: Using tissue-specific MAPK/ERK inactivation and RNA sequencing in combination with experimentation in embryonic kidneys, we demonstrate here that MAPK/ERK signaling maintains ureteric bud tip cells, suggesting a regulatory role in collecting duct progenitors. We additionally deliver new mechanistic information on how MAPK/ERK signaling regulates progenitor maintenance through its effects on chromatin accessibility and energy metabolism.


Assuntos
Rim , Néfrons , Células Epiteliais , Feminino , Perfilação da Expressão Gênica , Humanos , Rim/metabolismo , Néfrons/metabolismo , Especificidade de Órgãos , Gravidez
10.
FEBS Open Bio ; 12(7): 1306-1324, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35509130

RESUMO

Charcot-Marie-Tooth disease (CMT) is the most common inherited peripheral polyneuropathy in humans, and its different subtypes are linked to mutations in dozens of different genes. Mutations in ganglioside-induced differentiation-associated protein 1 (GDAP1) cause two types of CMT, demyelinating CMT4A and axonal CMT2K. The GDAP1-linked CMT genotypes are mainly missense point mutations. Despite clinical profiling and in vivo studies on the mutations, the etiology of GDAP1-linked CMT is poorly understood. Here, we describe the biochemical and structural properties of the Finnish founding CMT2K mutation H123R and CMT2K-linked R120W, both of which are autosomal dominant mutations. The disease variant proteins retain close to normal structure and solution behavior, but both present a significant decrease in thermal stability. Using GDAP1 variant crystal structures, we identify a side-chain interaction network between helices ⍺3, ⍺6, and ⍺7, which is affected by CMT mutations, as well as a hinge in the long helix ⍺6, which is linked to structural flexibility. Structural analysis of GDAP1 indicates that CMT may arise from disruption of specific intra- and intermolecular interaction networks, leading to alterations in GDAP1 structure and stability, and, eventually, insufficient motor and sensory neuron function.


Assuntos
Doença de Charcot-Marie-Tooth , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/metabolismo , Humanos , Mutação/genética , Proteínas do Tecido Nervoso/genética
11.
Front Neurol ; 13: 793937, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35250809

RESUMO

OBJECTIVE: To characterize serum biomarkers in mitochondrial CHCHD10-linked spinal muscular atrophy Jokela (SMAJ) type for disease monitoring and for the understanding of pathogenic mechanisms. METHODS: We collected serum samples from a cohort of 49 patients with SMAJ, all carriers of the heterozygous c.197G>T p.G66V variant in CHCHD10. As controls, we used age- and sex-matched serum samples obtained from Helsinki Biobank. Creatine kinase and creatinine were measured by standard methods. Neurofilament light (NfL) and glial fibrillary acidic protein (GFAP) were measured with single molecule array (Simoa), fibroblast growth factor 21 (FGF-21), and growth differentiation factor 15 (GDF-15) with an enzyme-linked immunosorbent assay. For non-targeted plasma metabolite profiling, samples were analyzed with liquid chromatography high-resolution mass spectrometry. Disease severity was evaluated retrospectively by calculating a symptom-based score. RESULTS: Axon degeneration marker, NfL, was unexpectedly not altered in the serum of patients with SMAJ, whereas astrocytic activation marker, GFAP, was slightly decreased. Creatine kinase was elevated in most patients, particularly men. We identified six metabolites that were significantly altered in serum of patients with SMAJ in comparison to controls: increased creatine and pyruvate, and decreased creatinine, taurine, N-acetyl-carnosine, and succinate. Creatine correlated with disease severity. Altered pyruvate and succinate indicated a metabolic response to mitochondrial dysfunction; however, lactate or mitochondrial myopathy markers FGF-21 or GDF-15 was not changed. CONCLUSIONS: Biomarkers of muscle mass and damage are altered in SMAJ serum, indicating a role for skeletal muscle in disease pathogenesis in addition to neurogenic damage. Despite the minimal mitochondrial pathology in skeletal muscle, signs of a metabolic shift can be detected.

12.
Nat Cell Biol ; 24(2): 148-154, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35165416

RESUMO

Metabolic characteristics of adult stem cells are distinct from their differentiated progeny, and cellular metabolism is emerging as a potential driver of cell fate conversions1-4. How these metabolic features are established remains unclear. Here we identified inherited metabolism imposed by functionally distinct mitochondrial age-classes as a fate determinant in asymmetric division of epithelial stem-like cells. While chronologically old mitochondria support oxidative respiration, the electron transport chain of new organelles is proteomically immature and they respire less. After cell division, selectively segregated mitochondrial age-classes elicit a metabolic bias in progeny cells, with oxidative energy metabolism promoting differentiation in cells that inherit old mitochondria. Cells that inherit newly synthesized mitochondria with low levels of Rieske iron-sulfur polypeptide 1 have a higher pentose phosphate pathway activity, which promotes de novo purine biosynthesis and redox balance, and is required to maintain stemness during early fate determination after division. Our results demonstrate that fate decisions are susceptible to intrinsic metabolic bias imposed by selectively inherited mitochondria.


Assuntos
Células-Tronco Adultas/metabolismo , Diferenciação Celular , Linhagem da Célula , DNA Mitocondrial/genética , Metabolismo Energético , Genes Mitocondriais , Glândulas Mamárias Humanas/metabolismo , Mitocôndrias/metabolismo , Animais , Linhagem Celular , Proliferação de Células , Senescência Celular , Feminino , Humanos , Glândulas Mamárias Humanas/citologia , Metaboloma , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/genética , Fenótipo , Proteoma
13.
Hum Mol Genet ; 31(6): 958-974, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-34635923

RESUMO

Mutations in mitochondrial DNA encoded subunit of ATP synthase, MT-ATP6, are frequent causes of neurological mitochondrial diseases with a range of phenotypes from Leigh syndrome and NARP to ataxias and neuropathies. Here we investigated the functional consequences of an unusual heteroplasmic truncating mutation m.9154C>T in MT-ATP6, which caused peripheral neuropathy, ataxia and IgA nephropathy. ATP synthase not only generates cellular ATP, but its dimerization is required for mitochondrial cristae formation. Accordingly, the MT-ATP6 truncating mutation impaired the assembly of ATP synthase and disrupted cristae morphology, supporting our molecular dynamics simulations that predicted destabilized a/c subunit subcomplex. Next, we modeled the effects of the truncating mutation using patient-specific induced pluripotent stem cells. Unexpectedly, depending on mutation heteroplasmy level, the truncation showed multiple threshold effects in cellular reprogramming, neurogenesis and in metabolism of mature motor neurons (MN). Interestingly, MN differentiation beyond progenitor stage was impaired by Notch hyperactivation in the MT-ATP6 mutant, but not by rotenone-induced inhibition of mitochondrial respiration, suggesting that altered mitochondrial morphology contributed to Notch hyperactivation. Finally, we also identified a lower mutation threshold for a metabolic shift in mature MN, affecting lactate utilization, which may be relevant for understanding the mechanisms of mitochondrial involvement in peripheral motor neuropathies. These results establish a critical and disease-relevant role for ATP synthase in human cell fate decisions and neuronal metabolism.


Assuntos
Heteroplasmia , ATPases Mitocondriais Próton-Translocadoras , Trifosfato de Adenosina , Ataxia/genética , DNA Mitocondrial/genética , Humanos , ATPases Mitocondriais Próton-Translocadoras/genética , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Neurônios Motores/metabolismo , Mutação
14.
Acta Neurol Scand ; 145(1): 63-72, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34418069

RESUMO

OBJECTIVES: Clinical diagnostics in adults with hereditary neurological diseases is complicated by clinical and genetic heterogeneity, as well as lifestyle effects. Here, we evaluate the effectiveness of exome sequencing and clinical costs in our difficult-to-diagnose adult patient cohort. Additionally, we expand the phenotypic and genetic spectrum of hereditary neurological disorders in Finland. METHODS: We performed clinical exome sequencing (CES) to 100 adult patients from Finland with neurological symptoms of suspected genetic cause. The patients were classified as myopathy (n = 57), peripheral neuropathy (n = 16), ataxia (n = 15), spastic paraplegia (n = 4), Parkinsonism (n = 3), and mixed (n = 5). In addition, we gathered the costs of prior diagnostic work-up to retrospectively assess the cost-effectiveness of CES as a first-line diagnostic tool. RESULTS: The overall diagnostic yield of CES was 27%. Pathogenic variants were found for 14 patients (in genes ANO5, CHCHD10, CLCN1, DES, DOK7, FKBP14, POLG, PYROXD1, SCN4A, TUBB3, and TTN) and likely pathogenic previously undescribed variants for 13 patients (in genes ABCD1, AFG3L2, ATL1, CACNA1A, COL6A1, DYSF, IRF2BPL, KCNA1, MT-ATP6, SAMD9L, SGCB, and TPM2). Age of onset below 40 years increased the probability of finding a genetic cause. Our cost evaluation of prior diagnostic work-up suggested that early CES would be cost-effective in this patient group, in which diagnostic costs increase linearly with prolonged investigations. CONCLUSIONS: Based on our results, CES is a cost-effective, powerful first-line diagnostic tool in establishing the molecular diagnosis in adult neurological patients with variable symptoms. Importantly, CES can markedly shorten the diagnostic odysseys of about one third of patients.


Assuntos
Doenças do Sistema Nervoso , Transtornos Parkinsonianos , Proteases Dependentes de ATP , ATPases Associadas a Diversas Atividades Celulares , Adulto , Anoctaminas , Proteínas de Transporte , Estudos de Coortes , Exoma/genética , Humanos , Mutação , Canal de Sódio Disparado por Voltagem NAV1.4 , Doenças do Sistema Nervoso/diagnóstico , Doenças do Sistema Nervoso/genética , Proteínas Nucleares , Peptidilprolil Isomerase , Estudos Retrospectivos
15.
Biochim Biophys Acta Mol Basis Dis ; 1868(1): 166298, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34751152

RESUMO

In the diagnostic work-up of a newborn infant with a metabolic crisis, lethal multiorgan failure on day six of life, and increased excretion of 3-methylglutaconic acid, we found using whole genome sequencing a homozygous SERAC1 mutation indicating MEGDHEL syndrome (3-methylglutaconic aciduria with deafness-dystonia, hepatopathy, encephalopathy, and Leigh-like syndrome). The SERAC1 protein is located at the contact site between mitochondria and the endoplasmic reticulum (ER) and is crucial for cholesterol trafficking. Our aim was to investigate the effect of the homozygous truncating mutation on mitochondrial structure and function. In the patient fibroblasts, no SERAC1 protein was detected, the mitochondrial network was severely fragmented, and the cristae morphology was altered. Filipin staining showed uneven localization of unesterified cholesterol. The calcium buffer function between cytoplasm and mitochondria was deficient. In liver mitochondria, complexes I, III, and IV were clearly decreased. In transfected COS-1 cells the mutant protein with the a 45-amino acid C-terminal truncation was distributed throughout the cell, whereas wild-type SERAC1 partially colocalized with the mitochondrial marker MT-CO1. The structural and functional mitochondrial abnormalities, caused by the loss of SERAC1, suggest that the crucial disease mechanism is disrupted interplay between the ER and mitochondria leading to decreased influx of calcium to mitochondria and secondary respiratory chain deficiency.


Assuntos
Hidrolases de Éster Carboxílico/genética , Erros Inatos do Metabolismo/genética , Mitocôndrias Hepáticas/genética , Doenças Mitocondriais/genética , Cálcio/metabolismo , Colesterol/metabolismo , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Feminino , Glutaratos/metabolismo , Humanos , Recém-Nascido , Masculino , Erros Inatos do Metabolismo/metabolismo , Erros Inatos do Metabolismo/patologia , Mitocôndrias Hepáticas/metabolismo , Mitocôndrias Hepáticas/patologia , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/patologia , Sequenciamento Completo do Genoma
16.
Brain ; 145(11): 3985-3998, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-34957489

RESUMO

Rhabdomyolysis is the acute breakdown of skeletal myofibres in response to an initiating factor, most commonly toxins and over exertion. A variety of genetic disorders predispose to rhabdomyolysis through different pathogenic mechanisms, particularly in patients with recurrent episodes. However, most cases remain without a genetic diagnosis. Here we present six patients who presented with severe and recurrent rhabdomyolysis, usually with onset in the teenage years; other features included a history of myalgia and muscle cramps. We identified 10 bi-allelic loss-of-function variants in the gene encoding obscurin (OBSCN) predisposing individuals to recurrent rhabdomyolysis. We show reduced expression of OBSCN and loss of obscurin protein in patient muscle. Obscurin is proposed to be involved in sarcoplasmic reticulum function and Ca2+ handling. Patient cultured myoblasts appear more susceptible to starvation as evidenced by a greater decreased in sarcoplasmic reticulum Ca2+ content compared to control myoblasts. This likely reflects a lower efficiency when pumping Ca2+ back into the sarcoplasmic reticulum and/or a decrease in Ca2+ sarcoplasmic reticulum storage ability when metabolism is diminished. OSBCN variants have previously been associated with cardiomyopathies. None of the patients presented with a cardiomyopathy and cardiac examinations were normal in all cases in which cardiac function was assessed. There was also no history of cardiomyopathy in first degree relatives, in particular in any of the carrier parents. This cohort is relatively young, thus follow-up studies and the identification of additional cases with bi-allelic null OBSCN variants will further delineate OBSCN-related disease and the clinical course of disease.


Assuntos
Cálcio , Rabdomiólise , Adolescente , Humanos , Rabdomiólise/genética , Rabdomiólise/diagnóstico , Rabdomiólise/patologia , Mialgia/genética , Retículo Sarcoplasmático/metabolismo , Perda de Heterozigosidade , Proteínas Serina-Treonina Quinases , Fatores de Troca de Nucleotídeo Guanina Rho/genética
17.
J Exp Med ; 218(10)2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34387651

RESUMO

Mitochondrial DNA (mtDNA) has been suggested to drive immune system activation, but the induction of interferon signaling by mtDNA has not been demonstrated in a Mendelian mitochondrial disease. We initially ascertained two patients, one with a purely neurological phenotype and one with features suggestive of systemic sclerosis in a syndromic context, and found them both to demonstrate enhanced interferon-stimulated gene (ISG) expression in blood. We determined each to harbor a previously described de novo dominant-negative heterozygous mutation in ATAD3A, encoding ATPase family AAA domain-containing protein 3A (ATAD3A). We identified five further patients with mutations in ATAD3A and recorded up-regulated ISG expression and interferon α protein in four of them. Knockdown of ATAD3A in THP-1 cells resulted in increased interferon signaling, mediated by cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING). Enhanced interferon signaling was abrogated in THP-1 cells and patient fibroblasts depleted of mtDNA. Thus, mutations in the mitochondrial membrane protein ATAD3A define a novel type I interferonopathy.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/genética , Interferons/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/genética , Mutação , Nucleotidiltransferases/metabolismo , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Criança , Pré-Escolar , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Feminino , Genes Dominantes , Humanos , Interferons/genética , Masculino , Proteínas Mitocondriais/metabolismo , Nucleotidiltransferases/genética , Escleroderma Sistêmico/genética , Escleroderma Sistêmico/patologia , Transdução de Sinais , Células THP-1 , Adulto Jovem
18.
Front Cell Dev Biol ; 9: 820105, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35237613

RESUMO

Neurofilament light (NFL) is one of the proteins forming multimeric neuron-specific intermediate filaments, neurofilaments, which fill the axonal cytoplasm, establish caliber growth, and provide structural support. Dominant missense mutations and recessive nonsense mutations in the neurofilament light gene (NEFL) are among the causes of Charcot-Marie-Tooth (CMT) neuropathy, which affects the peripheral nerves with the longest axons. We previously demonstrated that a neuropathy-causing homozygous nonsense mutation in NEFL led to the absence of NFL in patient-specific neurons. To understand the disease-causing mechanisms, we investigate here the functional effects of NFL loss in human motor neurons differentiated from induced pluripotent stem cells (iPSC). We used genome editing to generate NEFL knockouts and compared them to patient-specific nonsense mutants and isogenic controls. iPSC lacking NFL differentiated efficiently into motor neurons with normal axon growth and regrowth after mechanical axotomy and contained neurofilaments. Electrophysiological analysis revealed that motor neurons without NFL fired spontaneous and evoked action potentials with similar characteristics as controls. However, we found that, in the absence of NFL, human motor neurons 1) had reduced axonal caliber, 2) the amplitude of miniature excitatory postsynaptic currents (mEPSC) was decreased, 3) neurofilament heavy (NFH) levels were reduced and no compensatory increases in other filament subunits were observed, and 4) the movement of mitochondria and to a lesser extent lysosomes was increased. Our findings elaborate the functional roles of NFL in human motor neurons. NFL is not only a structural protein forming neurofilaments and filling the axonal cytoplasm, but our study supports the role of NFL in the regulation of synaptic transmission and organelle trafficking. To rescue the NFL deficiency in the patient-specific nonsense mutant motor neurons, we used three drugs, amlexanox, ataluren (PTC-124), and gentamicin to induce translational read-through or inhibit nonsense-mediated decay. However, the drugs failed to increase the amount of NFL protein to detectable levels and were toxic to iPSC-derived motor neurons.

20.
Ann Clin Transl Neurol ; 7(10): 1962-1972, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32949214

RESUMO

OBJECTIVE: ITPR3, encoding inositol 1,4,5-trisphosphate receptor type 3, was previously reported as a potential candidate disease gene for Charcot-Marie-Tooth neuropathy. Here, we present genetic and functional evidence that ITPR3 is a Charcot-Marie-Tooth disease gene. METHODS: Whole-exome sequencing of four affected individuals in an autosomal dominant family and one individual who was the only affected individual in his family was used to identify disease-causing variants. Skin fibroblasts from two individuals of the autosomal dominant family were analyzed functionally by western blotting, quantitative reverse transcription PCR, and Ca2+ imaging. RESULTS: Affected individuals in the autosomal dominant family had onset of symmetrical neuropathy with demyelinating and secondary axonal features at around age 30, showing signs of gradual progression with severe distal leg weakness and hand involvement in the proband at age 64. Exome sequencing identified a heterozygous ITPR3 p.Val615Met variant segregating with the disease. The individual who was the only affected in his family had disease onset at age 4 with demyelinating neuropathy. His condition was progressive, leading to severe muscle atrophy below knees and atrophy of proximal leg and hand muscles by age 16. Trio exome sequencing identified a de novo ITPR3 variant p.Arg2524Cys. Altered Ca2+ -transients in p.Val615Met patient fibroblasts suggested that the variant has a dominant-negative effect on inositol 1,4,5-trisphosphate receptor type 3 function. INTERPRETATION: Together with two previously identified variants, our report adds further evidence that ITPR3 is a disease-causing gene for CMT and indicates altered Ca2+ homeostasis in disease pathogenesis.


Assuntos
Doença de Charcot-Marie-Tooth , Receptores de Inositol 1,4,5-Trifosfato , Mutação , Adulto , Idoso , Humanos , Pessoa de Meia-Idade , Adulto Jovem , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/terapia , Genes Recessivos/genética , Heterozigoto , Receptores de Inositol 1,4,5-Trifosfato/genética , Mutação/genética , Linhagem , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...