Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Cell Biol ; 221(2)2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35024764

RESUMO

The repertoire of extratranslational functions of components of the protein synthesis apparatus is expanding to include control of key cell signaling networks. However, very little is known about noncanonical functions of members of the protein synthesis machinery in regulating cellular mechanics. We demonstrate that the eukaryotic initiation factor 6 (eIF6) modulates cellular mechanobiology. eIF6-depleted endothelial cells, under basal conditions, exhibit unchanged nascent protein synthesis, polysome profiles, and cytoskeleton protein expression, with minimal effects on ribosomal biogenesis. In contrast, using traction force and atomic force microscopy, we show that loss of eIF6 leads to reduced stiffness and force generation accompanied by cytoskeletal and focal adhesion defects. Mechanistically, we show that eIF6 is required for the correct spatial mechanoactivation of ERK1/2 via stabilization of an eIF6-RACK1-ERK1/2-FAK mechanocomplex, which is necessary for force-induced remodeling. These results reveal an extratranslational function for eIF6 and a novel paradigm for how mechanotransduction, the cellular cytoskeleton, and protein translation constituents are linked.


Assuntos
Células Endoteliais/metabolismo , Mecanotransdução Celular , Fatores de Iniciação de Peptídeos/metabolismo , Animais , Fenômenos Biomecânicos , Bovinos , Citoesqueleto/metabolismo , Adesões Focais/metabolismo , Células HEK293 , Humanos , Sistema de Sinalização das MAP Quinases , Camundongos , Biossíntese de Proteínas , Ribossomos/metabolismo
3.
Sci Adv ; 7(28)2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34244146

RESUMO

The response of endothelial cells to mechanical forces is a critical determinant of vascular health. Vascular pathologies, such as atherosclerosis, characterized by abnormal mechanical forces are frequently accompanied by endothelial-to-mesenchymal transition (EndMT). However, how forces affect the mechanotransduction pathways controlling cellular plasticity, inflammation, and, ultimately, vessel pathology is poorly understood. Here, we identify a mechanoreceptor that is sui generis for EndMT and unveil a molecular Alk5-Shc pathway that leads to EndMT and atherosclerosis. Depletion of Alk5 abrogates shear stress-induced EndMT responses, and genetic targeting of endothelial Shc reduces EndMT and atherosclerosis in areas of disturbed flow. Tensional force and reconstitution experiments reveal a mechanosensory function for Alk5 in EndMT signaling that is unique and independent of other mechanosensors. Our findings are of fundamental importance for understanding how mechanical forces regulate biochemical signaling, cell plasticity, and vascular disease.

4.
Cells ; 9(3)2020 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-32156009

RESUMO

Mechanical forces acting on biological systems, at both the macroscopic and microscopic levels, play an important part in shaping cellular phenotypes. There is a growing realization that biomolecules that respond to force directly applied to them, or via mechano-sensitive signalling pathways, can produce profound changes to not only transcriptional pathways, but also in protein translation. Forces naturally occurring at the molecular level can impact the rate at which the bacterial ribosome translates messenger RNA (mRNA) transcripts and influence processes such as co-translational folding of a nascent protein as it exits the ribosome. In eukaryotes, force can also be transduced at the cellular level by the cytoskeleton, the cell's internal filamentous network. The cytoskeleton closely associates with components of the translational machinery such as ribosomes and elongation factors and, as such, is a crucial determinant of localized protein translation. In this review we will give (1) a brief overview of protein translation in bacteria and eukaryotes and then discuss (2) how mechanical forces are directly involved with ribosomes during active protein synthesis and (3) how eukaryotic ribosomes and other protein translation machinery intimately associates with the mechanosensitive cytoskeleton network.


Assuntos
Células Eucarióticas/metabolismo , Biossíntese de Proteínas/fisiologia , Proteínas/metabolismo , RNA Mensageiro/metabolismo , Ribossomos/metabolismo , Humanos , Fenótipo , RNA Mensageiro/genética , Ribossomos/genética
5.
Front Cell Dev Biol ; 8: 34, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32083081

RESUMO

The cardiovascular system can sense and adapt to changes in mechanical stimuli by remodeling the physical properties of the heart and blood vessels in order to maintain homeostasis. Imbalances in mechanical forces and/or impaired sensing are now not only implicated but are, in some cases, considered to be drivers for the development and progression of cardiovascular disease. There is now growing evidence to highlight the role of mechanical forces in the regulation of protein translation pathways. The canonical mechanism of protein synthesis typically involves transcription and translation. Protein translation occurs globally throughout the cell to maintain general function but localized protein synthesis allows for precise spatiotemporal control of protein translation. This Review will cover studies on the role of biomechanical stress -induced translational control in the heart (often in the context of physiological and pathological hypertrophy). We will also discuss the much less studied effects of mechanical forces in regulating protein translation in the vasculature. Understanding how the mechanical environment influences protein translational mechanisms in the cardiovascular system, will help to inform disease pathogenesis and potential areas of therapeutic intervention.

6.
Nature ; 578(7794): 290-295, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32025034

RESUMO

Shear stress on arteries produced by blood flow is important for vascular development and homeostasis but can also initiate atherosclerosis1. Endothelial cells that line the vasculature use molecular mechanosensors to directly detect shear stress profiles that will ultimately lead to atheroprotective or atherogenic responses2. Plexins are key cell-surface receptors of the semaphorin family of cell-guidance signalling proteins and can regulate cellular patterning by modulating the cytoskeleton and focal adhesion structures3-5. However, a role for plexin proteins in mechanotransduction has not been examined. Here we show that plexin D1 (PLXND1) has a role in mechanosensation and mechanically induced disease pathogenesis. PLXND1 is required for the response of endothelial cells to shear stress in vitro and in vivo and regulates the site-specific distribution of atherosclerotic lesions. In endothelial cells, PLXND1 is a direct force sensor and forms a mechanocomplex with neuropilin-1 and VEGFR2 that is necessary and sufficient for conferring mechanosensitivity upstream of the junctional complex and integrins. PLXND1 achieves its binary functions as either a ligand or a force receptor by adopting two distinct molecular conformations. Our results establish a previously undescribed mechanosensor in endothelial cells that regulates cardiovascular pathophysiology, and provide a mechanism by which a single receptor can exhibit a binary biochemical nature.


Assuntos
Células Endoteliais/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mecanotransdução Celular , Glicoproteínas de Membrana/metabolismo , Estresse Mecânico , Animais , Aterosclerose/metabolismo , Feminino , Integrinas/metabolismo , Camundongos , Neuropilina-1/metabolismo , Maleabilidade , Receptores de Superfície Celular/metabolismo , Semaforinas/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
7.
Cardiovasc Res ; 116(11): 1863-1874, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31584065

RESUMO

AIMS: Genome-wide association studies (GWAS) have consistently identified an association between coronary artery disease (CAD) and a locus on chromosome 10 containing a single gene, JCAD (formerly KIAA1462). However, little is known about the mechanism by which JCAD could influence the development of atherosclerosis. METHODS AND RESULTS: Vascular function was quantified in subjects with CAD by flow-mediated dilatation (FMD) and vasorelaxation responses in isolated blood vessel segments. The JCAD risk allele identified by GWAS was associated with reduced FMD and reduced endothelial-dependent relaxations. To study the impact of loss of Jcad on atherosclerosis, Jcad-/- mice were crossed to an ApoE-/- background and fed a high-fat diet from 6 to16 weeks of age. Loss of Jcad did not affect blood pressure or heart rate. However, Jcad-/-ApoE-/- mice developed significantly less atherosclerosis in the aortic root and the inner curvature of the aortic arch. En face analysis revealed a striking reduction in pro-inflammatory adhesion molecules at sites of disturbed flow on the endothelial cell layer of Jcad-/- mice. Loss of Jcad lead to a reduced recovery perfusion in response to hind limb ischaemia, a model of altered in vivo flow. Knock down of JCAD using siRNA in primary human aortic endothelial cells significantly reduced the response to acute onset of flow, as evidenced by reduced phosphorylation of NF-КB, eNOS, and Akt. CONCLUSION: The novel CAD gene JCAD promotes atherosclerotic plaque formation via a role in the endothelial cell shear stress mechanotransduction pathway.


Assuntos
Doenças da Aorta/metabolismo , Aterosclerose/metabolismo , Moléculas de Adesão Celular/metabolismo , Doença da Artéria Coronariana/metabolismo , Circulação Coronária , Endotélio Vascular/metabolismo , Membro Posterior/irrigação sanguínea , Mecanotransdução Celular , Animais , Aorta/metabolismo , Aorta/fisiopatologia , Doenças da Aorta/genética , Doenças da Aorta/fisiopatologia , Doenças da Aorta/prevenção & controle , Aterosclerose/genética , Aterosclerose/fisiopatologia , Aterosclerose/prevenção & controle , Moléculas de Adesão Celular/genética , Células Cultivadas , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/fisiopatologia , Vasos Coronários/metabolismo , Vasos Coronários/fisiopatologia , Modelos Animais de Doenças , Endotélio Vascular/fisiopatologia , Estudo de Associação Genômica Ampla , Humanos , Isquemia/genética , Isquemia/metabolismo , Isquemia/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Fosforilação , Placa Aterosclerótica , Proteínas Proto-Oncogênicas c-akt , Estresse Mecânico
8.
Arterioscler Thromb Vasc Biol ; 38(9): 1959-1960, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30354263
9.
Sci Rep ; 7: 41223, 2017 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-28120882

RESUMO

Fibronectin (FN) assembly and fibrillogenesis are critically important in both development and the adult organism, but their importance in vascular functions is not fully understood. Here we identify a novel pathway by which haemodynamic forces regulate FN assembly and fibrillogenesis during vascular remodelling. Induction of disturbed shear stress in vivo and in vitro resulted in complex FN fibril assembly that was dependent on the mechanosensor PECAM. Loss of PECAM also inhibited the cell-intrinsic ability to remodel FN. Gain- and loss-of-function experiments revealed that PECAM-dependent RhoA activation is required for FN assembly. Furthermore, PECAM-/- mice exhibited reduced levels of active ß1 integrin that were responsible for reduced RhoA activation and downstream FN assembly. These data identify a new pathway by which endothelial mechanotransduction regulates FN assembly and flow-mediated vascular remodelling.


Assuntos
Artérias Carótidas/metabolismo , Fibronectinas/metabolismo , Hemodinâmica , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética , Animais , Artérias Carótidas/patologia , Artérias Carótidas/fisiologia , Bovinos , Células Cultivadas , Integrina beta1/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Remodelação Vascular , Proteína rhoA de Ligação ao GTP/metabolismo
10.
Nature ; 540(7634): 531-532, 2016 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-27926734
12.
Antioxid Redox Signal ; 25(7): 373-88, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27027326

RESUMO

SIGNIFICANCE: Forces are important in the cardiovascular system, acting as regulators of vascular physiology and pathology. Residing at the blood vessel interface, cells (endothelial cell, EC) are constantly exposed to vascular forces, including shear stress. Shear stress is the frictional force exerted by blood flow, and its patterns differ based on vessel geometry and type. These patterns range from uniform laminar flow to nonuniform disturbed flow. Although ECs sense and differentially respond to flow patterns unique to their microenvironment, the mechanisms underlying endothelial mechanosensing remain incompletely understood. RECENT ADVANCES: A large body of work suggests that ECs possess many mechanosensors that decorate their apical, junctional, and basal surfaces. These potential mechanosensors sense blood flow, translating physical force into biochemical signaling events. CRITICAL ISSUES: Understanding the mechanisms by which proposed mechanosensors sense and respond to shear stress requires an integrative approach. It is also critical to understand the role of these mechanosensors not only during embryonic development but also in the different vascular beds in the adult. Possible cross talk and integration of mechanosensing via the various mechanosensors remain a challenge. FUTURE DIRECTIONS: Determination of the hierarchy of endothelial mechanosensors is critical for future work, as is determination of the extent to which mechanosensors work together to achieve force-dependent signaling. The role and primary sensors of shear stress during development also remain an open question. Finally, integrative approaches must be used to determine absolute mechanosensory function of potential mechanosensors. Antioxid. Redox Signal. 25, 373-388.


Assuntos
Células Endoteliais/fisiologia , Endotélio Vascular/metabolismo , Mecanotransdução Celular , Animais , Humanos , Integrinas/metabolismo , Junções Intercelulares/metabolismo , Oxirredução , Transdução de Sinais , Estresse Mecânico
13.
Curr Opin Hematol ; 23(3): 235-42, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26906028

RESUMO

PURPOSE OF REVIEW: Endothelial cells line the surface of the cardiovascular system and display a large degree of heterogeneity due to developmental origin and location. Despite this heterogeneity, all endothelial cells are exposed to wall shear stress (WSS) imparted by the frictional force of flowing blood, which plays an important role in determining the endothelial cell phenotype. Although the effects of WSS have been greatly studied in vascular endothelial cells, less is known about the role of WSS in regulating cardiac function and cardiac endothelial cells. RECENT FINDINGS: Recent advances in genetic and imaging technologies have enabled a more thorough investigation of cardiac hemodynamics. Using developmental models, shear stress sensing by endocardial endothelial cells has been shown to play an integral role in proper cardiac development including morphogenesis and formation of the conduction system. In the adult, less is known about hemodynamics and endocardial endothelial cells, but a clear role for WSS in the development of coronary and valvular disease is increasingly appreciated. SUMMARY: Future research will further elucidate a role for WSS in the developing and adult heart, and understanding this dynamic relationship may represent a potential therapeutic target for the treatment of cardiomyopathies.


Assuntos
Sistema Cardiovascular/metabolismo , Mecanotransdução Celular , Sistema Cardiovascular/citologia , Células Endoteliais/metabolismo , Hemodinâmica , Humanos , Estresse Mecânico
14.
J Am Heart Assoc ; 4(1): e001210, 2015 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-25600142

RESUMO

BACKGROUND: Dilated cardiomyopathy is characterized by impaired contractility of cardiomyocytes, ventricular chamber dilatation, and systolic dysfunction. Although mutations in genes expressed in the cardiomyocyte are the best described causes of reduced contractility, the importance of endothelial-cardiomyocyte communication for proper cardiac function is increasingly appreciated. In the present study, we investigate the role of the endothelial adhesion molecule platelet endothelial cell adhesion molecule (PECAM-1) in the regulation of cardiac function. METHODS AND RESULTS: Using cell culture and animal models, we show that PECAM-1 expressed in endothelial cells (ECs) regulates cardiomyocyte contractility and cardiac function via the neuregulin-ErbB signaling pathway. Conscious echocardiography revealed left ventricular (LV) chamber dilation and systolic dysfunction in PECAM-1(-/-) mice in the absence of histological abnormalities or defects in cardiac capillary density. Despite deficits in global cardiac function, cardiomyocytes isolated from PECAM-1(-/-) hearts displayed normal baseline and isoproterenol-stimulated contractility. Mechanistically, absence of PECAM-1 resulted in elevated NO/ROS signaling and NRG-1 release from ECs, which resulted in augmented phosphorylation of its receptor ErbB2. Treatment of cardiomyocytes with conditioned media from PECAM-1(-/-) ECs resulted in enhanced ErbB2 activation, which was normalized by pre-treatment with an NRG-1 blocking antibody. To determine whether normalization of increased NRG-1 levels could correct cardiac function, PECAM-1(-/-) mice were treated with the NRG-1 blocking antibody. Echocardiography showed that treatment significantly improved cardiac function of PECAM-1(-/-) mice, as revealed by increased ejection fraction and fractional shortening. CONCLUSIONS: We identify a novel role for PECAM-1 in regulating cardiac function via a paracrine NRG1-ErbB pathway. These data highlight the importance of tightly regulated cellular communication for proper cardiac function.


Assuntos
Cardiomiopatia Dilatada/fisiopatologia , Comunicação Celular/fisiologia , Contração Miocárdica/fisiologia , Miócitos Cardíacos/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Animais , Células Cultivadas , Modelos Animais de Doenças , Endotélio Vascular/citologia , Testes de Função Cardíaca , Hemodinâmica/fisiologia , Humanos , Immunoblotting , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Reação em Cadeia da Polimerase/métodos , Sensibilidade e Especificidade , Volume Sistólico/fisiologia
15.
PLoS One ; 9(10): e109325, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25296172

RESUMO

A naturally-occurring fragment of tyrosyl-tRNA synthetase (TyrRS) has been shown in higher eukaryotes to 'moonlight' as a pro-angiogenic cytokine in addition to its primary role in protein translation. Pro-angiogenic cytokines have previously been proposed to be promising therapeutic mechanisms for the treatment of myocardial infarction. Here, we show that systemic delivery of the natural fragment of TyRS, mini-TyrRS, improves heart function in mice after myocardial infarction. This improvement is associated with reduced formation of scar tissue, increased angiogenesis of cardiac capillaries, recruitment of c-kitpos cells and proliferation of myocardial fibroblasts. This work demonstrates that mini-TyrRS has beneficial effects on cardiac repair and regeneration and offers support for the notion that elucidation of the ever expanding repertoire of noncanonical functions of aminoacyl tRNA synthetases offers unique opportunities for development of novel therapeutics.


Assuntos
Aminoacil-tRNA Sintetases/química , Coração/efeitos dos fármacos , Coração/fisiopatologia , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/fisiopatologia , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Capilares/efeitos dos fármacos , Capilares/fisiopatologia , Proliferação de Células/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Fibrose , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/patologia , Neovascularização Fisiológica/efeitos dos fármacos , Fragmentos de Peptídeos/uso terapêutico , Proteínas Proto-Oncogênicas c-kit/metabolismo
16.
Small GTPases ; 5: e28650, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25202973

RESUMO

Mechanical forces influence many biological processes via activation of signaling molecules, including the family of Rho GTPases. Within the endothelium, the mechanical force of fluid shear stress regulates the spatiotemporal activation of Rho GTPases, including Rac1. Shear stress-induced Rac1 activation is required for numerous essential biological processes, including changes in permeability, alignment of the actin cytoskeleton, redox signaling, and changes in gene expression. Thus, identifying mechanisms of Rac1 activation and the spatial cues that direct proper localization of the GTPase is essential in order to gain a comprehensive understanding the role of Rac1 in shear stress responses. This commentary will highlight our current understanding of how Rac1 activity is regulated in response to shear stress, as well as the downstream consequences of Rac1 activation.


Assuntos
Células Endoteliais/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo , Citoesqueleto de Actina , Polaridade Celular , Humanos , Mecanotransdução Celular , Resistência ao Cisalhamento , Proteínas rac1 de Ligação ao GTP/metabolismo
17.
Nat Commun ; 5: 3984, 2014 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-24917553

RESUMO

Endothelial cells (ECs) lining blood vessels express many mechanosensors, including platelet endothelial cell adhesion molecule-1 (PECAM-1), that convert mechanical force into biochemical signals. While it is accepted that mechanical stresses and the mechanical properties of ECs regulate vessel health, the relationship between force and biological response remains elusive. Here we show that ECs integrate mechanical forces and extracellular matrix (ECM) cues to modulate their own mechanical properties. We demonstrate that the ECM influences EC response to tension on PECAM-1. ECs adherent on collagen display divergent stiffening and focal adhesion growth compared with ECs on fibronectin. This is because of protein kinase A (PKA)-dependent serine phosphorylation and inactivation of RhoA. PKA signalling regulates focal adhesion dynamics and EC compliance in response to shear stress in vitro and in vivo. Our study identifies an ECM-specific, mechanosensitive signalling pathway that regulates EC compliance and may serve as an atheroprotective mechanism that maintains blood vessel integrity in vivo.


Assuntos
Aorta/fisiologia , Endotélio Vascular/fisiologia , Matriz Extracelular/fisiologia , Hemodinâmica , Animais , Aorta/citologia , Aorta/enzimologia , Aorta/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Endotélio Vascular/citologia , Endotélio Vascular/enzimologia , Endotélio Vascular/metabolismo , Matriz Extracelular/enzimologia , Matriz Extracelular/metabolismo , Adesões Focais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
18.
J Cell Biol ; 201(6): 863-73, 2013 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-23733346

RESUMO

Hemodynamic forces regulate embryonic organ development, hematopoiesis, vascular remodeling, and atherogenesis. The mechanosensory stimulus of blood flow initiates a complex network of intracellular pathways, including activation of Rac1 GTPase, establishment of endothelial cell (EC) polarity, and redox signaling. The activity of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase can be modulated by the GTP/GDP state of Rac1; however, the molecular mechanisms of Rac1 activation by flow are poorly understood. Here, we identify a novel polarity complex that directs localized Rac1 activation required for downstream reactive oxygen species (ROS) production. Vav2 is required for Rac1 GTP loading, whereas, surprisingly, Tiam1 functions as an adaptor in a VE-cadherin-p67phox-Par3 polarity complex that directs localized activation of Rac1. Furthermore, loss of Tiam1 led to the disruption of redox signaling both in vitro and in vivo. Our results describe a novel molecular cascade that regulates redox signaling by the coordinated regulation of Rac1 and by linking components of the polarity complex to the NADPH oxidase.


Assuntos
Neuropeptídeos/metabolismo , Estresse Oxidativo/fisiologia , Transdução de Sinais/fisiologia , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Aorta/fisiologia , Caderinas/genética , Caderinas/metabolismo , Moléculas de Adesão Celular/metabolismo , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Células-Tronco Embrionárias/citologia , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Neuropeptídeos/genética , Oxirredução , Fosfoproteínas/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , RNA Interferente Pequeno/genética , Estresse Mecânico , Proteína 1 Indutora de Invasão e Metástase de Linfoma de Células T , Proteínas rac de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/genética
19.
Circ Res ; 113(1): 32-39, 2013 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-23661718

RESUMO

RATIONALE: Arteriogenesis, the shear stress-driven remodeling of collateral arteries, is critical in restoring blood flow to ischemic tissue after a vascular occlusion. Our previous work has shown that the adaptor protein Shc mediates endothelial responses to shear stress in vitro. OBJECTIVE: To examine the role of the adaptor protein Shc in arteriogenesis and endothelial-dependent responses to shear stress in vivo. METHODS AND RESULTS: Conditional knockout mice in which Shc is deleted from endothelial cells were subjected to femoral artery ligation. Hindlimb perfusion recovery was attenuated in Shc conditional knockout mice compared with littermate controls. Reduced perfusion was associated with blunted collateral remodeling and reduced capillary density. Bone marrow transplantation experiments revealed that endothelial Shc is required for perfusion recovery because loss of Shc in bone marrow-derived hematopoietic cells had no effect on recovery. Mechanistically, Shc deficiency resulted in impaired activation of the nuclear factor κ-light-chain-enhancer of activated B-cell-dependent inflammatory pathway and reduced CD45⁺ cell infiltration. Unexpectedly, Shc was required for arterial specification of the remodeling arteriole by mediating upregulation of the arterial endothelial cell marker ephrinB2 and activation of the Notch pathway. In vitro experiments confirmed that Shc was required for shear stress-induced activation of the Notch pathway and downstream arterial specification through a mechanism that involves upregulation of Notch ligands delta-like 1 and delta-like 4. CONCLUSIONS: Shc mediates activation of 2 key signaling pathways that are critical for inflammation and arterial specification; collectively, these pathways contribute to arteriogenesis and the recovery of blood perfusion.


Assuntos
Arterite/etiologia , Isquemia/fisiopatologia , NF-kappa B/fisiologia , Neovascularização Fisiológica/genética , Receptores Notch/fisiologia , Proteínas Adaptadoras da Sinalização Shc/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Arterite/genética , Transplante de Medula Óssea , Proteínas de Ligação ao Cálcio , Adesão Celular , Circulação Colateral , Células Endoteliais/metabolismo , Efrina-B2/fisiologia , Artéria Femoral/cirurgia , Genes Sintéticos , Células-Tronco Hematopoéticas/metabolismo , Hemorreologia , Membro Posterior/irrigação sanguínea , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Leucócitos/fisiologia , Ligadura , Masculino , Mecanorreceptores/fisiologia , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Knockout , Proteínas Adaptadoras da Sinalização Shc/deficiência , Proteínas Adaptadoras da Sinalização Shc/genética , Transdução de Sinais , Estresse Mecânico
20.
Small GTPases ; 4(2): 123-6, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23511848

RESUMO

Mechanical forces influence nearly all aspects of biology. Cells are equipped with numerous mechanosensitive proteins that activate various signaling cascades in response to mechanical cues from their environment. Much interest lies in understanding how cells respond to external stresses. A number of studies have highlighted the coordination of mechanical and chemical signaling cascades downstream of integrins. In recent years, the study of mechanotransduction has expanded to other mechanosensitive adhesion receptors, such as platelet endothelial cell adhesion molecule-1 (PECAM-1). This commentary will highlight our current understanding of integrin and PECAM-1-mediated mechanotransduction and expand on the observation that a localized mechanical stress can elicit a global mechanosignaling response.


Assuntos
Células Endoteliais/fisiologia , Integrinas/metabolismo , Mecanotransdução Celular/fisiologia , Molécula-1 de Adesão Celular Endotelial a Plaquetas/fisiologia , Proteína rhoA de Ligação ao GTP/metabolismo , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...