Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 11: 1156525, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37593325

RESUMO

The market for orthopedic implant alloys has seen significant growth in recent years, and efforts to reduce the carbon footprint of medical treatment (i.e., green medicine) have prompted extensive research on biodegradable magnesium-based alloys. Magnesium alloys provide the mechanical strength and biocompatibility required of medical implants; however, they are highly prone to corrosion. In this study, Mg-9Li alloy was immersed in cell culture medium to simulate degradation in the human body, while monitoring the corresponding effects of the reaction products on cells. Variations in pH revealed the generation of hydroxyl groups, which led to cell death. At day-5 of the reaction, a coating of MgCO3 (H2O)3, HA, and α -TCP appeared on sample surfaces. The coating presented three-dimensional surface structures (at nanometer to submicron scales), anti-corrosion effects, and an altered surface micro-environment conducive to the adhesion of osteoblasts. This analysis based on bio-simulation immersion has important implications for the clinical use of Mg alloys to secure regenerated periodontal tissue.

2.
Nanomaterials (Basel) ; 13(9)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37177022

RESUMO

A layered double hydroxide (LDH) calcined-framework adsorbent was investigated for the rapid removal of heavy metal cations from plating wastewater. Li-Al-CO3 LDH was synthesized on an aluminum lathe waste frame surface to prepare the sorbent. The calcination treatment modified the LDH surface properties, such as the hydrophilicity and the surface pH. The change in surface functional groups and the leaching of lithium ions affected the surface properties and the adsorption capacity of the heavy metal cations. A zeta potential analysis confirmed that the 400 °C calcination changed the LDH surface from positively charged (+10 mV) to negatively charged (-17 mV). This negatively charged surface contributed to the sorbent instantly bonding with heavy metal cations in large quantities, as occurs during contact with wastewater. The adsorption isotherms could be fitted using the Freundlich model. The pseudo-second-order model and the rate-controlled liquid-film diffusion model successfully simulated the adsorption kinetics, suggesting that the critical adsorption step was a heterogeneous surface reaction. This study also confirmed that the recovered nickel and/or copper species could be converted into supported metal nanoparticles with a high-temperature hydrogen reduction treatment, which could be reused as catalysts.

3.
J Hazard Mater ; 403: 123556, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-32781279

RESUMO

A process for recycling Ni2+ in Ni-plating wastewater was investigated. This study employed Mg alloy flash waste to reduce the Ni2+ in the wastewater into metallic Ni. Fine second-phase Mg17Al12 in a network is the critical point for promoting the reduction reaction of Ni2+. The microstructures of the Mg alloy flash scrap and the die-cast Mg alloy scrap waste fulfilled the requirement. The Mg17Al12 is like a catalyst for the quick reduction of the Ni2+ ions into pure Ni metal. Contrarily, pure Mg (not containing Mg17Al12 particles) and gravity-cast AZ91D Mg alloy (having coarse Mg17Al12 particles) were not suitable for being used for the Ni2+ wastewater treatment. Based on the above results and discussion, using the Mg alloy flash scrap waste for treating the laboratory-made Ni2+-containing wastewater, the wastewater initially with ∼5600 ppm of Ni2+ ions could be reduced to ∼20 ppm in 2 h. When applying the Mg alloy flash scrap for the Ni plating wastewater from industry, the concentration of Ni2+ was able to be reduced from ∼16,670 ppm to ∼1434 ppm in 10 min for the wastewater at 90 °C.

4.
Materials (Basel) ; 12(19)2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31574919

RESUMO

This study aims to investigate the shear bonding strength (SBS) and thermal cycling effect of orthodontic brackets bonded with fluoride release/rechargeable LiAl-F layered double hydroxide (LDH-F) contained dental orthodontic resin. 3% and 5% of LDH-F nanopowder were gently mixed to commercial resin-based adhesives Orthomite LC (LC, LC3, LC5) and Transbond XT (XT, XT3). A fluoroaluminosilicate modified resin adhesive Transbond color change (TC) was selected as a positive control. Fifteen brackets each group were bonded to bovine enamel and the SBS was tested with/without thermal cycling. The adhesive remnant index (ARI) was evaluated at 20× magnification. The fluoride-releasing/rechargeability and cytocompatibility were also evaluated. The SBS of LC, LC3, and LC5 were significantly higher than XT and TC. After thermal cycling, the SBS of LC, LC3, and LC5 did not decrease and was significantly higher than TC. The changes of ARI scores indicate that failure occurred not only cohesive but also semi-cohesive fracture. The 30 days accumulated daily fluoride release of LC3, LC5, and TC without recharge are higher than 300 µg/cm2. The LDH-F contained resin adhesive possesses higher SBS compared to positive control TC. Fluoride release and the rechargeable feature can be achieved for preventing enamel demineralization without cytotoxicity.

5.
Sci Rep ; 6: 32458, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27581184

RESUMO

The patients with end-stage of renal disease (ESRD) need to take oral phosphate binder. Traditional phosphate binders may leave the disadvantage of aluminum intoxication or cardiac calcification. Herein, Mg-Fe-Cl hydrotalcite-like nanoplatelet (HTln) is for the first time characterized as potential oral phosphate binder, with respect to its phosphorus uptake capacity in cow milk and cellular cytotoxicity. A novel method was developed for synthesizing the Mg-Fe-Cl HTln powder in different Mg(2+): Fe(3+) ratios where the optimization was 2.8:1. Addition of 0.5 g Mg-Fe-Cl HTln in cow milk could reduce its phosphorus content by 40% in 30 min and by 65% in 90 min. In low pH environment, the Mg-Fe-Cl HTln could exhibit relatively high performance for uptaking phosphorus. During a 90 min reaction of the HTln in milk, no phosphorus restoration occurred. In-vitro cytotoxicity assay of Mg-Fe-Cl HTln revealed no potential cellular cytotoxicity. The cells that were cultured in the HTln extract-containing media were even more viable than cells that were cultured in extract-free media (blank control). The Mg-Fe-Cl HTln extract led to hundred ppm of Mg ion and some ppm of Fe ion in the media, should be a positive effect on the good cell viability.


Assuntos
Hidróxido de Alumínio/química , Hidróxido de Magnésio/química , Fosfatos/isolamento & purificação , Fósforo/isolamento & purificação , Adsorção , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/fisiologia , Humanos , Falência Renal Crônica/sangue , Falência Renal Crônica/terapia , Cinética , Camundongos , Leite/química , Fosfatos/química , Fósforo/química , Diálise Renal , Soluções
6.
Ultrasonics ; 54(8): 2063-71, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25081407

RESUMO

A new horn with high displacement amplification for ultrasonic welding is developed. The profile of the horn is a nonrational B-spline curve with an open uniform knot vector. The ultrasonic actuation of the horn exploits the first longitudinal displacement mode of the horn. The horn is designed by an optimization scheme and finite element analyses. Performances of the proposed horn have been evaluated by experiments. The displacement amplification of the proposed horn is 41.4% and 8.6% higher than that of the traditional catenoidal horn and a Bézier-profile horn, respectively, with the same length and end surface diameters. The developed horn has a lower displacement amplification than the nonuniform rational B-spline profiled horn but a much smoother stress distribution. The developed horn, the catenoidal horn, and the Bézier horn are fabricated and used for ultrasonic welding of lap-shear specimens. The bonding strength of the joints welded by the open uniform nonrational B-spline (OUNBS) horn is the highest among the three horns for the various welding parameters considered. The locations of the failure mode and the distribution of the voids of the specimens are investigated to explain the reason of the high bonding strength achieved by the OUNBS horn.

7.
Opt Express ; 20 Suppl 5: A669-77, 2012 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-23037533

RESUMO

High-oriented Li-Al layered double hydroxide (LDH) films were grown on an InGaN light-emitting diode (LED) structures by immersing in an aqueous alkaline Al(3+)- and Li+-containing solution. The stand upward and adjacent Li-Al LDH platelet structure was formed on the LED structure as a textured film to increase the light extraction efficiency. The light output power of the LED structure with the Li-Al LDH platelet structure had a 31% enhancement compared with a conventional LED structure at 20 mA. The reverse leakage currents, at -5V, were measured at -2.3 × 10(-8) A and -1.0 × 10(-10)A for the LED structures without and with the LDH film that indicated the Li-Al LDH film had the insulated property acted a passivation layer that had potential to replace the conventional SiO2 and Si3N4 passivation layers. The Li-Al LDH layer had the textured platelet structure and the insulated property covering whole the LED surface that has potential for high efficiency InGaN LED applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...