Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(6)2022 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-35328512

RESUMO

Alzheimer's disease (AD) causes dementia and memory loss in the elderly. Deposits of beta-amyloid peptide and hyperphosphorylated tau protein are present in a brain with AD. A filtrate of Helicobacter pylori's culture was previously found to induce hyperphosphorylation of tau in vivo, suggesting that bacterial exotoxins could permeate the blood-brain barrier and directly induce tau's phosphorylation. H. pylori, which infects ~60% of the world population and causes gastritis and gastric cancer, produces a pro-inflammatory urease (HPU). Here, the neurotoxic potential of HPU was investigated in cultured cells and in rats. SH-SY5Y neuroblastoma cells exposed to HPU (50-300 nM) produced reactive oxygen species (ROS) and had an increased [Ca2+]i. HPU-treated BV-2 microglial cells produced ROS, cytokines IL-1ß and TNF-α, and showed reduced viability. Rats received daily i.p., HPU (5 µg) for 7 days. Hyperphosphorylation of tau at Ser199, Thr205 and Ser396 sites, with no alterations in total tau or GSK-3ß levels, and overexpression of Iba1, a marker of microglial activation, were seen in hippocampal homogenates. HPU was not detected in the brain homogenates. Behavioral tests were performed to assess cognitive impairments. Our findings support previous data suggesting an association between infection by H. pylori and tauopathies such as AD, possibly mediated by its urease.


Assuntos
Doença de Alzheimer , Helicobacter pylori , Doença de Alzheimer/etiologia , Doença de Alzheimer/metabolismo , Animais , Glicogênio Sintase Quinase 3 beta/metabolismo , Helicobacter pylori/metabolismo , Fosforilação/fisiologia , Ratos , Espécies Reativas de Oxigênio , Urease/metabolismo , Proteínas tau/metabolismo
2.
Int J Mol Sci ; 22(13)2021 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-34281258

RESUMO

Infection by Proteus mirabilis causes urinary stones and catheter incrustation due to ammonia formed by urease (PMU), one of its virulence factors. Non-enzymatic properties, such as pro-inflammatory and neurotoxic activities, were previously reported for distinct ureases, including that of the gastric pathogen Helicobacter pylori. Here, PMU was assayed on isolated cells to evaluate its non-enzymatic properties. Purified PMU (nanomolar range) was tested in human (platelets, HEK293 and SH-SY5Y) cells, and in murine microglia (BV-2). PMU promoted platelet aggregation. It did not affect cellular viability and no ammonia was detected in the cultures' supernatants. PMU-treated HEK293 cells acquired a pro-inflammatory phenotype, producing reactive oxygen species (ROS) and cytokines IL-1ß and TNF-α. SH-SY5Y cells stimulated with PMU showed high levels of intracellular Ca2+ and ROS production, but unlike BV-2 cells, SH-SY5Y did not synthesize TNF-α and IL-1ß. Texas Red-labeled PMU was found in the cytoplasm and in the nucleus of all cell types. Bioinformatic analysis revealed two bipartite nuclear localization sequences in PMU. We have shown that PMU, besides urinary stone formation, can potentially contribute in other ways to pathogenesis. Our data suggest that PMU triggers pro-inflammatory effects and may affect cells beyond the renal system, indicating a possible role in extra-urinary diseases.


Assuntos
Proteus mirabilis/enzimologia , Proteus mirabilis/patogenicidade , Urease/metabolismo , Urease/toxicidade , Sequência de Aminoácidos , Animais , Cálcio/metabolismo , Linhagem Celular , Núcleo Celular/metabolismo , Células HEK293 , Humanos , Técnicas In Vitro , Camundongos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/microbiologia , Modelos Moleculares , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/microbiologia , Neurotoxinas/química , Neurotoxinas/metabolismo , Neurotoxinas/toxicidade , Sinais de Localização Nuclear , Agregação Plaquetária/efeitos dos fármacos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/toxicidade , Urease/química , Virulência/fisiologia
3.
Pestic Biochem Physiol ; 167: 104591, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32527424

RESUMO

Extracellular traps (ETs) are extracellular nucleic acids associated with cytoplasmic proteins that may aid in the capture and killing of pathogens. To date, only a few insects were shown to display this kind of immune response. Jaburetox, a peptide derived from jack bean urease, showed toxic effects in Rhodnius prolixus, affecting its immune response. The present study aims to evaluate the role of extracellular nucleic acids in R. prolixus' immune response, using Jaburetox as a model entomotoxin. The insects were treated with extracellular nucleic acids and/or Jaburetox, and the cellular and humoral responses were assessed. We also evaluated the release of extracellular nucleic acids induced by toxins, and performed immunocompetence assays using pathogenic bacteria. Our results demonstrated that extracellular nucleic acids can modulate the insect immune responses, either alone or associated with the toxin. Although RNA and DNA induced a cellular immune response, only DNA was able to neutralize the Jaburetox-induced aggregation of hemocytes. Likewise, the activation of the humoral response was different for RNA and DNA. Nevertheless, it was observed that both, extracellular DNA and RNA, immunocompensated the Jaburetox effects on insect defenses upon the challenge of a pathogenic bacterium. The toxin was not able to alter cellular viability, in spite of inducing an increase in the reactive species of oxygen formation. In conclusion, we have demonstrated a protective role for extracellular nucleic acids in R. prolixus´ immune response to toxins and pathogenic bacteria.


Assuntos
Ácidos Nucleicos , Rhodnius , Animais , Canavalia , Sistema Imunitário , Urease
4.
Front Microbiol ; 8: 1883, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29021786

RESUMO

Helicobacter pylori is a pathogen involved in gastric diseases such as ulcers and carcinomas. H. pylori's urease is an important virulence factor produced in large amounts by this bacterium. In previous studies, we have shown that this protein is able to activate several cell types like neutrophils, monocytes, platelets, endothelial cells, and gastric epithelial cells. Angiogenesis is a physiological process implicated in growth, invasion and metastization of tumors. Here, we have analyzed the angiogenic potential of H. pylori urease (HPU) in gastric epithelial cells. No cytotoxicity was observed in AGS, Kato-III, and MKN28 gastric cell lines treated with 300 nM HPU, as evaluated by the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. As we previously reported in neutrophils, treatment with 300 nM HPU also had an anti-apoptotic effect in gastric epithelial cells leading to a 2.2-fold increase in the levels of Bcl-XL after 6 h, and a decrease of 80% in the content of BAD, after 48 h, two mitochondrial proteins involved in regulation of apoptosis. Within 10 min of exposure, HPU is rapidly internalized by gastric epithelial cells. Treatment of the gastric cells with methyl-ß-cyclodextrin abolished HPU internalization suggesting a cholesterol-dependent process. HPU induces the expression of pro-angiogenic factors and the decrease of expression of anti-angiogenic factors by AGS cells. The angiogenic activity of HPU was analyzed using in vitro and in vivo models. HPU induced formation of tube-like structures by human umbilical vascular endothelial cells in a 9 h experiment. In the chicken embryo chorioallantoic membrane model, HPU induced intense neo-vascularization after 3 days. In conclusion, our results indicate that besides allowing bacterial colonization of the gastric mucosa, H. pylori's urease triggers processes that initiate pro-angiogenic responses in different cellular models. Thus, this bacterial urease, a major virulence factor, may also play a role in gastric carcinoma development.

5.
Artigo em Inglês | MEDLINE | ID: mdl-28602911

RESUMO

Jaburetox is a recombinant peptide derived from a Canavalia ensiformis urease that presents toxic effects upon several species of insects, phytopathogenic fungi and yeasts of medical importance. So far, no toxicity of Jaburetox to mammals has been shown. Previous reports have identified biochemical targets of this toxic peptide in insect models, although its mechanism of action is not completely understood. In this work, we aimed to characterize the effects of Jaburetox in hemolymphatic insect cells. For this purpose, the model insect and Chagas' disease vector Rhodnius prolixus was used. In vivo and in vitro experiments indicated that Jaburetox interacts with a subset of hemocytes and it can be found in various subcellular compartments. In insects injected with Jaburetox there was an increase in the gene expression of the enzymes UDP-N-acetylglucosamine pyrophosphorylase (UAP), chitin synthase and nitric oxide synthase (NOS). Nevertheless, the expression of NOS protein, the enzyme activities of UAP and acid phosphatase (a possible link between UAP and NOS) as well as the phosphorylation state of proteins remained unchanged upon the in vivo Jaburetox treatment. Nitric oxide (NO) imaging using fluorescent probes showed that Jaburetox augmented NO production in the hemocyte aggregates when compared to controls. Even though Jaburetox activated the hemocytes, as demonstrated by wheat germ agglutinin binding assays, the peptide did not lead to an increase of their phagocytic behavior. Taken together, these findings contribute to our understanding of toxic effects of Jaburetox, a peptide with biotechnological applications and a prospective tool for rational insect control.


Assuntos
Hemócitos/efeitos dos fármacos , Praguicidas/toxicidade , Rhodnius , Urease/toxicidade , Animais , Células Cultivadas , Ninfa/efeitos dos fármacos , Proteínas de Plantas , Proteínas Recombinantes/toxicidade
6.
Front Microbiol ; 8: 2447, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29312166

RESUMO

Gastric infection by Helicobacter pylori is considered a risk factor for gastric and duodenal cancer, and extragastric diseases. Previous data have shown that, in a non-enzymatic way, H. pylori urease (HPU) activates neutrophils to produce ROS and also induces platelet aggregation, requiring ADP secretion modulated by the 12-lipoxygenase pathway, a signaling cascade also triggered by the physiological agonist collagen. Here we investigated further the effects on platelets of recombinant versions of the holoenzyme HPU, and of its two subunits (HpUreA and HpUreB). Although HpUreA had no aggregating activity on platelets, it partially inhibited collagen-induced aggregation. HpUreB induced platelet aggregation in the nanomolar range, and also interfered dose-dependently on both collagen- and ADP-induced platelet aggregation. HPU-induced platelet aggregation was inhibited by antibodies against glycoprotein VI (GPVI), the main collagen receptor in platelets. Flow cytometry analysis revealed exposure of P-selectin in HPU-activated platelets. Anti-glycoprotein IIbIIIa (GPIIbIIIa) antibodies increased the binding of FITC-labeled HPU to activated platelets, whereas anti-GPVI did not. Evaluation of post-transcriptional events in HPU-activated platelets revealed modifications in the pre-mRNA processing of pro-inflammatory proteins, with increased levels of mRNAs encoding IL-1ß and CD14. We concluded that HPU activates platelets probably through its HpUreB subunit. Activation of platelets by HPU turns these cells into a pro-inflammatory phenotype. Altogether, our data suggest that H. pylori urease, besides allowing bacterial survival within the gastric mucosa, may have an important, and so far overlooked, role in gastric inflammation mediated by urease-activated neutrophils and platelets.

7.
Parasit Vectors ; 9(1): 412, 2016 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-27455853

RESUMO

BACKGROUND: Although the entomotoxicity of plant ureases has been reported almost 20 years ago, their insecticidal mechanism of action is still not well understood. Jaburetox is a recombinant peptide derived from one of the isoforms of Canavalia ensiformis (Jack Bean) urease that presents biotechnological interest since it is toxic to insects of different orders. Previous studies of our group using the Chagas disease vector and model insect Rhodnius prolixus showed that the treatment with Jack Bean Urease (JBU) led to hemocyte aggregation and hemolymph darkening, among other effects. In this work, we employed cell biology and biochemical approaches to investigate whether Jaburetox would induce not only cellular but also humoral immune responses in this species. RESULTS: The findings indicated that nanomolar doses of Jaburetox triggered cation-dependent, in vitro aggregation of hemocytes of fifth-instar nymphs and adults. The use of specific eicosanoid synthesis inhibitors revealed that the cellular immune response required cyclooxygenase products since indomethacin prevented the Jaburetox-dependent aggregation whereas baicalein and esculetin (inhibitors of the lipoxygenases pathway) did not. Cultured hemocytes incubated with Jaburetox for 24 h showed cytoskeleton disorganization, chromatin condensation and were positive for activated caspase 3, an apoptosis marker, although their phagocytic activity remained unchanged. Finally, in vivo treatments by injection of Jaburetox induced both a cellular response, as observed by hemocyte aggregation, and a humoral response, as seen by the increase of spontaneous phenoloxidase activity, a key enzyme involved in melanization and defense. On the other hand, the humoral response elicited by Jaburetox injections did not lead to an increment of antibacterial or lysozyme activities. Jaburetox injections also impaired the clearance of the pathogenic bacteria Staphylococcus aureus from the hemolymph leading to increased mortality, indicating a possible immunosuppression induced by treatment with the peptide. CONCLUSIONS: In our experimental conditions and as part of its toxic action, Jaburetox activates some responses of the immune system of R. prolixus both in vivo and in vitro, although this induction does not protect the insects against posterior bacterial infections. Taken together, these findings contribute to the general knowledge of insect immunity and shed light on Jaburetox's mechanism of action.


Assuntos
Canavalia/química , Inseticidas/farmacologia , Peptídeos/farmacologia , Proteínas de Plantas/farmacologia , Rhodnius/efeitos dos fármacos , Urease/farmacologia , Animais , Hemócitos/efeitos dos fármacos , Hemócitos/imunologia , Hemócitos/microbiologia , Hemolinfa/efeitos dos fármacos , Hemolinfa/imunologia , Hemolinfa/microbiologia , Imunidade Celular/efeitos dos fármacos , Imunidade Humoral/efeitos dos fármacos , Inseticidas/química , Peptídeos/química , Proteínas de Plantas/química , Rhodnius/imunologia , Rhodnius/microbiologia , Staphylococcus aureus/fisiologia , Urease/química
8.
Toxicon ; 69: 240-9, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23466444

RESUMO

The gastric pathogen Helicobacter pylori produces large amounts of urease, whose enzyme activity enables the bacterium to survive in the stomach. We have previously shown that ureases display enzyme-independent effects in mammalian models, most through lipoxygenases-mediated pathways. Here, we evaluated potential pro-inflammatory properties of H. pylori urease (HPU). Mouse paw edema and activation of human neutrophils were tested using a purified, cell-free, recombinant HPU. rHPU induced paw edema with intense neutrophil infiltration. In vitro 100 nM rHPU was chemotactic to human neutrophils, inducing production of reactive oxygen species. rHPU-activated neutrophils showed increased lifespan, with inhibition of apoptosis accompanied by alterations of Bcl-XL and Bad contents. These effects of rHPU persisted in the absence of enzyme activity. rHPU-induced paw edema, neutrophil chemotaxis and apoptosis inhibition reverted in the presence of the lipoxygenase inhibitors esculetin or AA861. Neutrophils exposed to rHPU showed increased content of lipoxygenase(s) and no alteration of cyclooxygenase(s). Altogether, our data indicate that HPU, besides allowing the bacterial survival in the stomach, could play an important role in the pathogenesis of the gastrointestinal inflammatory disease caused by H. pylori.


Assuntos
Helicobacter pylori/enzimologia , Inflamação/metabolismo , Ativação de Neutrófilo/efeitos dos fármacos , Urease/metabolismo , Animais , Apoptose/efeitos dos fármacos , Quimiotaxia de Leucócito/efeitos dos fármacos , Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/microbiologia , Infecções por Helicobacter/metabolismo , Humanos , Lipoxigenase/metabolismo , Masculino , Camundongos , Ativação de Neutrófilo/fisiologia , Neutrófilos/citologia , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes/metabolismo
9.
J Cell Mol Med ; 14(7): 2025-34, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19754669

RESUMO

The bacterium Helicobacter pylori causes peptic ulcers and gastric cancer in human beings by mechanisms yet not fully understood. H. pylori produces urease which neutralizes the acidic medium permitting its survival in the stomach. We have previously shown that ureases from jackbean, soybean or Bacillus pasteurii induce blood platelet aggregation independently of their enzyme activity by a pathway requiring platelet secretion, activation of calcium channels and lipoxygenase-derived eicosanoids. We investigated whether H. pylori urease displays platelet-activating properties and defined biochemical pathways involved in this phenomenon. For that the effects of purified recombinant H. pylori urease (HPU) added to rabbit platelets were assessed turbidimetrically. ATP secretion and production of lipoxygenase metabolites by activated platelets were measured. Fluorescein-labelled HPU bound to platelets but not to erythrocytes. HPU induced aggregation of rabbit platelets (ED(50) 0.28 microM) accompanied by ATP secretion. No correlation was found between platelet activation and ureolytic activity of HPU. Platelet aggregation was blocked by esculetin (12-lipoxygenase inhibitor) and enhanced approximately 3-fold by indomethacin (cyclooxygenase inhibitor). A metabolite of 12-lipoxygenase was produced by platelets exposed to HPU. Platelet responses to HPU did not involve platelet-activating factor, but required activation of verapamil-inhibitable calcium channels. Our data show that purified H. pylori urease activates blood platelets at submicromolar concentrations. This property seems to be common to ureases regardless of their source (plant or bacteria) or quaternary structure (single, di- or tri-chain proteins). These properties of HPU could play an important role in pathogenesis of gastrointestinal and associated cardiovascular diseases caused by H. pylori.


Assuntos
Helicobacter pylori/enzimologia , Lipoxigenases/metabolismo , Ativação Plaquetária/fisiologia , Urease/fisiologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...