Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 16(8): e1008707, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32780778

RESUMO

Proteus mirabilis, a Gram-negative uropathogen, is a major causative agent in catheter-associated urinary tract infections (CAUTI). Mannose-resistant Proteus-like fimbriae (MR/P) are crucially important for P. mirabilis infectivity and are required for biofilm formation and auto-aggregation, as well as for bladder and kidney colonization. Here, the X-ray crystal structure of the MR/P tip adhesin, MrpH, is reported. The structure has a fold not previously described and contains a transition metal center with Zn2+ coordinated by three conserved histidine residues and a ligand. Using biofilm assays, chelation, metal complementation, and site-directed mutagenesis of the three histidines, we show that an intact metal binding site occupied by zinc is essential for MR/P fimbria-mediated biofilm formation, and furthermore, that P. mirabilis biofilm formation is reversible in a zinc-dependent manner. Zinc is also required for MR/P-dependent agglutination of erythrocytes, and mutation of the metal binding site renders P. mirabilis unfit in a mouse model of UTI. The studies presented here provide important clues as to the mechanism of MR/P-mediated biofilm formation and serve as a starting point for identifying the physiological MR/P fimbrial receptor.


Assuntos
Adesinas Bacterianas/metabolismo , Biofilmes , Proteínas de Fímbrias/metabolismo , Proteus mirabilis/metabolismo , Infecções Urinárias/microbiologia , Zinco/metabolismo , Adesinas Bacterianas/química , Adesinas Bacterianas/genética , Sequência de Aminoácidos , Proteínas de Fímbrias/química , Proteínas de Fímbrias/genética , Humanos , Infecções por Proteus/metabolismo , Infecções por Proteus/microbiologia , Proteus mirabilis/química , Proteus mirabilis/genética , Alinhamento de Sequência , Infecções Urinárias/metabolismo , Zinco/química
2.
Acta Crystallogr D Struct Biol ; 74(Pt 11): 1053-1062, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30387764

RESUMO

The important uropathogen Proteus mirabilis encodes a record number of chaperone/usher-pathway adhesive fimbriae. Such fimbriae, which are used for adhesion to cell surfaces/tissues and for biofilm formation, are typically important virulence factors in bacterial pathogenesis. Here, the structures of the receptor-binding domains of the tip-located two-domain adhesins UcaD (1.5 Šresolution) and AtfE (1.58 Šresolution) from two P. mirabilis fimbriae (UCA/NAF and ATF) are presented. The structures of UcaD and AtfE are both similar to the F17G type of tip-located fimbrial receptor-binding domains, and the structures are very similar despite having only limited sequence similarity. These structures represent an important step towards a molecular-level understanding of P. mirabilis fimbrial adhesins and their roles in the complex pathogenesis of urinary-tract infections.


Assuntos
Adesinas Bacterianas/química , Conformação Proteica , Proteus mirabilis/metabolismo , Adesinas Bacterianas/classificação , Adesinas Bacterianas/metabolismo , Sequência de Aminoácidos , Cristalização , Cristalografia por Raios X , Proteus mirabilis/crescimento & desenvolvimento , Homologia de Sequência
3.
Methods Mol Biol ; 1796: 301-320, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29856062

RESUMO

Homology modeling is a very powerful tool in the absence of atomic structures for understanding the general fold of the enzyme, conserved residues, catalytic tunnel/pocket as well as substrate and product binding sites. This information is useful for structure-assisted enzyme design approach for the development of robust enzymes especially for industrial applications.


Assuntos
Celulase/química , Modelos Moleculares , Homologia Estrutural de Proteína , Sequência de Aminoácidos , Mutagênese Insercional/genética , Estrutura Secundária de Proteína , Alinhamento de Sequência , Deleção de Sequência
4.
Fungal Biol ; 121(2): 158-171, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28089047

RESUMO

The molecular mechanisms underlying the interaction of the pathogen, Heterobasidion annosum s.l., the conifer tree and the biocontrol fungus, Phlebiopsis gigantea have not been fully elucidated. Members of the cytochrome P450 (CYP) protein family may contribute to the detoxification of components of chemical defence of conifer trees by H. annosum during infection. Additionally, they may also be involved in the interaction between H. annosum and P. gigantea. A genome-wide analysis of CYPs in Heterobasidion irregulare was carried out alongside gene expression studies. According to the Standardized CYP Nomenclature criteria, the H. irregulare genome has 121 CYP genes and 17 CYP pseudogenes classified into 11 clans, 35 families, and 64 subfamilies. Tandem CYP arrays originating from gene duplications and belonging to the same family and subfamily were found. Phylogenetic analysis showed that all the families of H. irregulare CYPs were monophyletic groups except for the family CYP5144. Microarray analysis revealed the transcriptional pattern for 130 transcripts of CYP-encoding genes during growth on culture filtrate produced by P. gigantea. The high level of P450 gene diversity identified in this study could result from extensive gene duplications presumably caused by the high metabolic demands of H. irregulare in its ecological niches.


Assuntos
Basidiomycota/enzimologia , Sistema Enzimático do Citocromo P-450/análise , Basidiomycota/genética , Basidiomycota/isolamento & purificação , Sistema Enzimático do Citocromo P-450/genética , Perfilação da Expressão Gênica , Genes Fúngicos , Genoma Fúngico , Doenças das Plantas/microbiologia , Traqueófitas/microbiologia
5.
Fungal Genet Biol ; 84: 41-51, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26385823

RESUMO

The cerato-platanin family is a group of small secreted cysteine-rich proteins exclusive for filamentous fungi. They have been shown to be involved in the interactions between fungi and plants. Functional characterization of members from this family has been performed mainly in Ascomycota, except Moniliophthora perniciosa. Our previous phylogenetic analysis revealed that recent gene duplication of cerato-platanins has occurred in Basidiomycota but not in Ascomycota, suggesting higher functional diversification of this protein family in Basidiomycota than in Ascomycota. In this study, we identified three cerato-platanin homologues from the basidiomycete conifer pathogen Heterobasidion annosum sensu stricto. Expression of the homologues under various conditions as well as their roles in the H. annosum s.s.-Pinus sylvestris (Scots pine) pathosystem was investigated. Results showed that HaCPL2 (cerato-platanin-like protein 2) had the highest sequence similarity to cerato-platanin from Ceratocystis platani and hacpl2 was significantly induced during nutrient starvation and necrotrophic growth. The treatment with recombinant HaCPL2 induced cell death, phytoalexin production and defense gene expression in Nicotiana tabacum. Eliciting and cell death-inducing ability accompanied by retardation of apical root growth was also demonstrated in Scots pine seedlings. Our results suggest that HaCPL2 might contribute to the virulence of H. annosum s.s. by promoting plant cell death.


Assuntos
Basidiomycota/metabolismo , Proteínas Fúngicas/farmacologia , Nicotiana/efeitos dos fármacos , Pinus sylvestris/efeitos dos fármacos , Ascomicetos/genética , Ascomicetos/patogenicidade , Basidiomycota/química , Basidiomycota/genética , Morte Celular/efeitos dos fármacos , Proteínas Fúngicas/genética , Proteínas Fúngicas/isolamento & purificação , Proteínas Fúngicas/metabolismo , Interações Hospedeiro-Patógeno , Filogenia , Pinus sylvestris/citologia , Pinus sylvestris/genética , Pinus sylvestris/microbiologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/farmacologia , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Recombinantes/farmacologia , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Sesquiterpenos/metabolismo , Nicotiana/citologia , Nicotiana/genética , Nicotiana/microbiologia , Fitoalexinas
6.
FEBS J ; 282(11): 2167-77, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25765184

RESUMO

UNLABELLED: The filamentous fungus Hypocrea jecorina (anamorph of Trichoderma reesei) is the predominant source of enzymes for industrial saccharification of lignocellulose biomass. The major enzyme, cellobiohydrolase Cel7A, constitutes nearly half of the total protein in the secretome. The performance of such enzymes is susceptible to inhibition by compounds liberated by physico-chemical pre-treatment if the biomass is kept unwashed. Xylan and xylo-oligosaccharides (XOS) have been proposed to play a key role in inhibition of cellobiohydrolases of glycoside hydrolase family 7. To elucidate the mechanism behind this inhibition at a molecular level, we used X-ray crystallography to determine structures of H. jecorina Cel7A in complex with XOS. Structures with xylotriose, xylotetraose and xylopentaose revealed a predominant binding mode at the entrance of the substrate-binding tunnel of the enzyme, in which each xylose residue is shifted ~ 2.4 Å towards the catalytic center compared with binding of cello-oligosaccharides. Furthermore, partial occupancy of two consecutive xylose residues at subsites -2 and -1 suggests an alternative binding mode for XOS in the vicinity of the catalytic center. Interestingly, the -1 xylosyl unit exhibits an open aldehyde conformation in one of the structures and a ring-closed pyranoside in another complex. Complementary inhibition studies with p-nitrophenyl lactoside as substrate indicate mixed inhibition rather than pure competitive inhibition. DATABASE: The atomic coordinates and structure factors are available in the Protein Data Bank under accession number 4D5I (H. jecorina Cel7A E212Q variant, complex with xylotriose), 4D5J (H. jecorina Cel7A E217Q variant, complex with xylotriose), 4D5O (H. jecorina Cel7A E212Q variant, complex with xylopentaose), 4D5P (H. jecorina Cel7A E217Q variant, complex with xylopentaose), 4D5Q (wild-type H. jecorina Cel7A, complex with xylopentaose) and 4D5V (H. jecorina Cel7A E217Q variant, complex with xylotetraose).


Assuntos
Celulose 1,4-beta-Celobiosidase/química , Proteínas Fúngicas/química , Xilanos/química , Domínio Catalítico , Celulose 1,4-beta-Celobiosidase/antagonistas & inibidores , Cristalografia por Raios X , Inibidores Enzimáticos/química , Proteínas Fúngicas/antagonistas & inibidores , Ligação de Hidrogênio , Cinética , Modelos Moleculares , Ligação Proteica , Trichoderma/enzimologia
7.
BMC Evol Biol ; 13: 240, 2013 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-24188142

RESUMO

BACKGROUND: Hydrophobins are small secreted cysteine-rich proteins that play diverse roles during different phases of fungal life cycle. In basidiomycetes, hydrophobin-encoding genes often form large multigene families with up to 40 members. The evolutionary forces driving hydrophobin gene expansion and diversification in basidiomycetes are poorly understood. The functional roles of individual genes within such gene families also remain unclear. The relationship between the hydrophobin gene number, the genome size and the lifestyle of respective fungal species has not yet been thoroughly investigated. Here, we present results of our survey of hydrophobin gene families in two species of wood-degrading basidiomycetes, Phlebia brevispora and Heterobasidion annosum s.l. We have also investigated the regulatory pattern of hydrophobin-encoding genes from H. annosum s.s. during saprotrophic growth on pine wood as well as on culture filtrate from Phlebiopsis gigantea using micro-arrays. These data are supplemented by results of the protein structure modeling for a representative set of hydrophobins. RESULTS: We have identified hydrophobin genes from the genomes of two wood-degrading species of basidiomycetes, Heterobasidion irregulare, representing one of the microspecies within the aggregate H. annosum s.l., and Phlebia brevispora. Although a high number of hydrophobin-encoding genes were observed in H. irregulare (16 copies), a remarkable expansion of these genes was recorded in P. brevispora (26 copies). A significant expansion of hydrophobin-encoding genes in other analyzed basidiomycetes was also documented (1-40 copies), whereas contraction through gene loss was observed among the analyzed ascomycetes (1-11 copies). Our phylogenetic analysis confirmed the important role of gene duplication events in the evolution of hydrophobins in basidiomycetes. Increased number of hydrophobin-encoding genes appears to have been linked to the species' ecological strategy, with the non-pathogenic fungi having increased numbers of hydrophobins compared with their pathogenic counterparts. However, there was no significant relationship between the number of hydrophobin-encoding genes and genome size. Furthermore, our results revealed significant differences in the expression levels of the 16 H. annosum s.s. hydrophobin-encoding genes which suggest possible differences in their regulatory patterns. CONCLUSIONS: A considerable expansion of the hydrophobin-encoding genes in basidiomycetes has been observed. The distribution and number of hydrophobin-encoding genes in the analyzed species may be connected to their ecological preferences. Results of our analysis also have shown that H. annosum s.l. hydrophobin-encoding genes may be under positive selection. Our gene expression analysis revealed differential expression of H. annosum s.s. hydrophobin genes under different growth conditions, indicating their possible functional diversification.


Assuntos
Basidiomycota/genética , Evolução Molecular , Proteínas Fúngicas/genética , Sequência de Aminoácidos , Ascomicetos , Basidiomycota/classificação , Proteínas Fúngicas/química , Duplicação Gênica , Dados de Sequência Molecular , Filogenia , Estrutura Terciária de Proteína , Alinhamento de Sequência , Madeira/metabolismo
8.
Fungal Genet Biol ; 58-59: 33-41, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23850601

RESUMO

Isocitrate lyase (ICL), a signature enzyme of the glyoxylate cycle, is required for metabolism of non-fermentable carbon compounds like acetate or ethanol, and virulence in bacteria and fungi. In the present study, we investigate the role of the glyoxylate cycle in the fungal biocontrol agent Trichoderma atroviride by generating icl deletion and complementation mutants. Phenotypic analyses of the deletion mutant Δicl suggest that ICL is required for normal growth, conidial pigmentation and germination, and abiotic stress tolerance. The Δicl strain display reduced antagonism towards Botrytis cinerea in plate confrontation assays. Secretion and sandwich assays further show that secreted factors are partly responsible for the reduced antagonism. Furthermore, in vitro root colonization assays shows that the Δicl strain retains the ability to internally colonize Arabidopsis thaliana roots. However, the Δicl strain has a reduced ability to induce systemic defence in A. thaliana leaves that results in reduced protection against B. cinerea. These data shows that ICL and the glyoxylate cycle are important for biocontrol traits in T. atroviride, including direct antagonism and induction of defence responses in plants.


Assuntos
Antibiose , Arabidopsis/imunologia , Glioxilatos/metabolismo , Doenças das Plantas/microbiologia , Trichoderma/fisiologia , Arabidopsis/microbiologia , Botrytis/fisiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Isocitrato Liase/genética , Isocitrato Liase/metabolismo , Fenótipo , Doenças das Plantas/imunologia , Trichoderma/enzimologia , Trichoderma/genética
9.
Microbiology (Reading) ; 159(Pt 5): 890-901, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23475952

RESUMO

During sporulation of Streptomyces coelicolor, the cytokinetic protein FtsZ is assembled into dozens of regularly spaced Z rings, which orchestrate the division of aerial hyphae into spores. We have previously found that a missense allele of ftsZ, ftsZ17(Spo), primarily affects sporulation septation rather than formation of cross-walls in vegetative mycelium. To clarify what aspect of FtsZ function is compromised in such non-sporulating mutants, we here use a genetic strategy to identify new ftsZ(Spo) alleles and describe how some of the mutations affect the biochemical properties of FtsZ. We have established a system for purification of recombinant untagged S. coelicolor FtsZ, and shown that it assembles dynamically into single protofilaments, displays a critical concentration indicative of cooperative assembly and has a rate of GTP hydrolysis that is substantially higher than that of the closely related Mycobacterium tuberculosis FtsZ. Of the nine isolated ftsZ(Spo) mutations, four affect the interface between the two main subdomains of FtsZ that is implicated in the assembly-induced conformational changes thought to mediate the GTP/GDP-driven cooperative assembly of FtsZ. We find that all these four mutations affect the polymerization behaviour of FtsZ in vitro. In addition, at least one ftsZ(Spo) mutation at the longitudinal contact surface between subunits in protofilaments strongly affects formation of polymers in vitro. We conclude that the assembly of Z rings during sporulation of S. coelicolor is highly sensitive to disturbances of FtsZ polymerization and therefore constitutes an excellent system for analysis of the elusive properties of FtsZ that mediate its characteristic polymerization dynamics.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/genética , Mutação , Streptomyces coelicolor/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Proteínas do Citoesqueleto/metabolismo , Dados de Sequência Molecular , Polimerização , Esporos Bacterianos/química , Esporos Bacterianos/genética , Esporos Bacterianos/crescimento & desenvolvimento , Esporos Bacterianos/metabolismo , Streptomyces coelicolor/química , Streptomyces coelicolor/genética , Streptomyces coelicolor/crescimento & desenvolvimento
10.
BMC Res Notes ; 5: 581, 2012 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-23095575

RESUMO

BACKGROUND: Certain bacteria from the genus Streptomyces are currently used as biological control agents against plant pathogenic fungi. Hydrolytic enzymes that degrade fungal cell wall components, such as chitinases, are suggested as one possible mechanism in biocontrol interactions. Adaptive evolution of chitinases are previously reported for plant chitinases involved in defence against fungal pathogens, and in fungal chitinases involved in fungal-fungal interactions. In this study we investigated the molecular evolution of chitinase chiJ in the bacterial genus Streptomyces. In addition, as chiJ orthologs are previously reported in certain fungal species as a result from horizontal gene transfer, we conducted a comparative study of differences in evolutionary patterns between bacterial and fungal taxa. FINDINGS: ChiJ contained three sites evolving under strong positive selection and four groups of co-evolving sites. Regions of high amino acid diversity were predicted to be surface-exposed and associated with coil regions that connect certain α-helices and ß-strands in the family 18 chitinase TIM barrel structure, but not associated with the catalytic cleft. The comparative study with fungal ChiJ orthologs identified three regions that display signs of type 1 functional divergence, where unique adaptations in the bacterial and fungal taxa are driven by positive selection. CONCLUSIONS: The identified surface-exposed regions of chitinase ChiJ where sequence diversification is driven by positive selection may putatively be related to functional divergence between bacterial and fungal orthologs. These results show that ChiJ orthologs have evolved under different selective constraints following the horizontal gene transfer event.


Assuntos
Quitinases/genética , Fungos/enzimologia , Transferência Genética Horizontal , Streptomyces/enzimologia , Evolução Molecular , Modelos Moleculares , Filogenia , Streptomyces/classificação
11.
Can J Microbiol ; 58(9): 1035-46, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22906186

RESUMO

The newly discovered fungal species Aspergillus saccharolyticus was found to produce a culture broth rich in ß-glucosidase activity. In this present work, the main ß-glucosidase of A. saccharolyticus responsible for the efficient hydrolytic activity was identified, isolated, and characterized. Ion exchange chromatography was used to fractionate the culture broth, yielding fractions with high ß-glucosidase activity and only 1 visible band on an SDS-PAGE gel. Mass spectrometry analysis of this band gave peptide matches to ß-glucosidases from aspergilli. Through a polymerase chain reaction approach using degenerate primers and genome walking, a 2919 bp sequence encoding the 860 amino acid BGL1 polypeptide was determined. BGL1 of A. saccharolyticus has 91% and 82% identity with BGL1 from Aspergillus aculeatus and BGL1 from Aspergillus niger , respectively, both belonging to Glycoside Hydrolase family 3. Homology modeling studies suggested ß-glucosidase activity with preserved retaining mechanism and a wider catalytic pocket compared with other ß-glucosidases. The bgl1 gene was heterologously expressed in Trichoderma reesei QM6a, purified, and characterized by enzyme kinetics studies. The enzyme can hydrolyze cellobiose, p-nitrophenyl-ß-d-glucoside, and cellodextrins. The enzyme showed good thermostability, was stable at 50 °C, and at 60 °C it had a half-life of approximately 6 h.


Assuntos
Aspergillus/enzimologia , Modelos Moleculares , beta-Glucosidase/química , beta-Glucosidase/metabolismo , Sequência de Aminoácidos , Aspergillus/genética , Celobiose/metabolismo , Celulose/análogos & derivados , Celulose/metabolismo , Dextrinas/metabolismo , Meia-Vida , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Alinhamento de Sequência , Temperatura , Trichoderma/genética , beta-Glucosidase/genética
12.
J Biol Chem ; 287(30): 25669-77, 2012 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-22654109

RESUMO

Inflammation-related (AA) amyloidosis is a severe clinical disorder characterized by the systemic deposition of the acute-phase reactant serum amyloid A (SAA). SAA is normally associated with the high-density lipoprotein (HDL) fraction in plasma, but under yet unclear circumstances, the apolipoprotein is converted into amyloid fibrils. AA amyloid and heparan sulfate (HS) display an intimate relationship in situ, suggesting a role for HS in the pathogenic process. This study reports that HS dissociates SAA from HDLs isolated from inflamed mouse plasma. Application of surface plasmon resonance spectroscopy and molecular modeling suggests that HS simultaneously binds to two apolipoproteins of HDL, SAA and ApoA-I, and thereby induce SAA dissociation. The activity requires a minimum chain length of 12-14 sugar units, proposing an explanation to previous findings that short HS fragments preclude AA amyloidosis. The results address the initial events in the pathogenesis of AA amyloidosis.


Assuntos
Amiloidose/metabolismo , Apolipoproteína A-I , Heparitina Sulfato , Lipoproteínas HDL , Proteína Amiloide A Sérica , Amiloidose/etiologia , Animais , Apolipoproteína A-I/química , Apolipoproteína A-I/metabolismo , Heparitina Sulfato/química , Heparitina Sulfato/metabolismo , Lipoproteínas HDL/química , Lipoproteínas HDL/metabolismo , Camundongos , Proteína Amiloide A Sérica/química , Proteína Amiloide A Sérica/metabolismo , Ressonância de Plasmônio de Superfície
13.
PLoS One ; 7(5): e36152, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22586463

RESUMO

The recently identified phylogenetic subgroup B5 of fungal glycoside hydrolase family 18 genes encodes enzymes with mannosyl glycoprotein endo-N-acetyl-ß-D-glucosaminidase (ENGase)-type activity. Intracellular ENGase activity is associated with the endoplasmic reticulum associated protein degradation pathway (ERAD) of misfolded glycoproteins, although the biological relevance in filamentous fungi is not known. Trichoderma atroviride is a mycoparasitic fungus that is used for biological control of plant pathogenic fungi. The present work is a functional study of the T. atroviride B5-group gene Eng18B, with emphasis on its role in fungal growth and antagonism. A homology model of T. atroviride Eng18B structure predicts a typical glycoside hydrolase family 18 (αß)(8) barrel architecture. Gene expression analysis shows that Eng18B is induced in dual cultures with the fungal plant pathogens Botrytis cinerea and Rhizoctonia solani, although a basal expression is observed in all growth conditions tested. Eng18B disruption strains had significantly reduced growth rates but higher conidiation rates compared to the wild-type strain. However, growth rates on abiotic stress media were significantly higher in Eng18B disruption strains compared to the wild-type strain. No difference in spore germination, germ-tube morphology or in hyphal branching was detected. Disruption strains produced less biomass in liquid cultures than the wild-type strain when grown with chitin as the sole carbon source. In addition, we determined that Eng18B is required for the antagonistic ability of T. atroviride against the grey mould fungus B. cinerea in dual cultures and that this reduction in antagonistic ability is partly connected to a secreted factor. The phenotypes were recovered by re-introduction of an intact Eng18B gene fragment in mutant strains. A putative role of Eng18B ENGase activity in the endoplasmic reticulum associated protein degradation pathway of endogenous glycoproteins in T. atroviride is discussed in relation to the observed phenotypes.


Assuntos
Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Trichoderma/enzimologia , Trichoderma/crescimento & desenvolvimento , Botrytis/metabolismo , Botrytis/patogenicidade , Quitina/metabolismo , Retículo Endoplasmático , Regulação Fúngica da Expressão Gênica , Glicoproteínas/metabolismo , Plantas/parasitologia , Dobramento de Proteína , Proteólise , Rhizoctonia/metabolismo , Rhizoctonia/patogenicidade , Trichoderma/patogenicidade
14.
PLoS One ; 6(12): e29011, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22205989

RESUMO

Protein C inhibitor (PCI) is a serpin type of serine protease inhibitor that is found in many tissues and fluids in human, including blood plasma, seminal plasma and urine. This inhibitor displays an unusually broad protease specificity compared with other serpins. Previous studies have shown that the N-glycan(s) and the NH2-terminus affect some blood-related functions of PCI. In this study, we have for the first time determined the N-glycan profile of seminal plasma PCI, by mass spectrometry. The N-glycan structures differed markedly compared with those of both blood-derived and urinary PCI, providing evidence that the N-glycans of PCI are expressed in a tissue-specific manner. The most abundant structure (m/z 2592.9) had a composition of Fuc3Hex5HexNAc4, consistent with a core fucosylated bi-antennary glycan with terminal Lewis(x). A major serine protease in semen, prostate specific antigen (PSA), was used to evaluate the effects of N-glycans and the NH2-terminus on a PCI function related to the reproductive tract. Second-order rate constants for PSA inhibition by PCI were 4.3±0.2 and 4.1±0.5 M⁻¹ s⁻¹ for the natural full-length PCI and a form lacking six amino acids at the NH2-terminus, respectively, whereas these constants were 4.8±0.1 and 29±7 M⁻¹ s⁻¹ for the corresponding PNGase F-treated forms. The 7-8-fold higher rate constants obtained when both the N-glycans and the NH2-terminus had been removed suggest that these structures jointly affect the rate of PSA inhibition, presumably by together hindering conformational changes of PCI required to bind to the catalytic pocket of PSA.


Assuntos
Regulação da Expressão Gênica , Polissacarídeos , Inibidor da Proteína C/química , Inibidor da Proteína C/metabolismo , Humanos , Masculino , Modelos Moleculares , Especificidade de Órgãos , Antígeno Prostático Específico/antagonistas & inibidores , Antígeno Prostático Específico/química , Antígeno Prostático Específico/metabolismo , Inibidor da Proteína C/sangue , Inibidor da Proteína C/farmacologia , Conformação Proteica , Sêmen/metabolismo
15.
Plant Mol Biol ; 77(1-2): 33-45, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21584858

RESUMO

Scots pine (Pinus sylvestris) secretes a number of small, highly-related, disulfide-rich proteins (Sp-AMPs) in response to challenges with fungal pathogens such as Heterobasidion annosum, although their biological role has been unknown. Here, we examined the expression patterns of these genes, as well as the structure and function of the encoded proteins. Northern blots and quantitative real time PCR showed increased levels of expression that are sustained during the interactions of host trees with pathogens, but not non-pathogens, consistent with a function in conifer tree defenses. Furthermore, the genes were up-regulated after treatment with salicylic acid and an ethylene precursor, 1-aminocyclopropane-1-carboxylic-acid, but neither methyl jasmonate nor H(2)O(2) induced expression, indicating that Sp-AMP gene expression is independent of the jasmonic acid signaling pathways. The cDNA encoding one of the proteins was cloned and expressed in Pichia pastoris. The purified protein had antifungal activity against H. annosum, and caused morphological changes in its hyphae and spores. It was directly shown to bind soluble and insoluble ß-(1,3)-glucans, specifically and with high affinity. Furthermore, addition of exogenous glucan is linked to higher levels of Sp-AMP expression in the conifer. Homology modeling and sequence comparisons suggest that a conserved patch on the surface of the globular Sp-AMP is a carbohydrate-binding site that can accommodate approximately four sugar units. We conclude that these proteins belong to a new family of antimicrobial proteins (PR-19) that are likely to act by binding the glucans that are a major component of fungal cell walls.


Assuntos
Pinus sylvestris/metabolismo , Proteínas de Plantas/metabolismo , beta-Glucanas/metabolismo , Acetatos/farmacologia , Sequência de Aminoácidos , Aminoácidos Cíclicos/farmacologia , Basidiomycota/metabolismo , Basidiomycota/fisiologia , Parede Celular/metabolismo , Clonagem Molecular , Ciclopentanos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Imunidade Inata , Oxilipinas/farmacologia , Pichia/genética , Pinus sylvestris/microbiologia , Proteínas de Plantas/química , Domínios e Motivos de Interação entre Proteínas , Ácido Salicílico/farmacologia , Alinhamento de Sequência , Transdução de Sinais , beta-Glucanas/química
16.
Biochem Biophys Res Commun ; 403(2): 198-202, 2010 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-21056543

RESUMO

Protein C inhibitor (PCI) is a 57-kDa glycoprotein that exists in many tissues and secretions in human. As a member of the serpin superfamily of proteins it displays unusually broad protease specificity. PCI is implicated in the regulation of a wide range of processes, including blood coagulation, fertilization, prevention of tumors and pathogen defence. It has been reported that PCI isolated from human blood plasma is highly heterogeneous, and that this heterogeneity is caused by differences in N-glycan structures, N-glycosylation occupancy, and the presence of two forms that differ by the presence or absence of 6 amino acids at the amino-terminus. In this study we have verified that such heterogeneity exists in PCI purified from single individuals, and that individuals of two different ethnicities possess a similar PCI pattern, verifying that the micro-heterogeneity is conserved among humans. Furthermore, we have provided experimental evidence that PCI in both individuals is O-glycosylated on Thr20 with a core type 1 O-glycan, which is mostly NeuAcGalGalNAc. Modeling suggested that the O-glycan attachment site is located in proximity to several ligand-binding sites of the inhibitor.


Assuntos
Polissacarídeos/química , Inibidor da Proteína C/química , Sequência de Aminoácidos , Doadores de Sangue , Glicosilação , Humanos , Dados de Sequência Molecular , Conformação Proteica , Espectrometria de Massas por Ionização por Electrospray
17.
J Mol Biol ; 402(4): 657-68, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20678502

RESUMO

ATP binding cassette transport systems account for most import of necessary nutrients in bacteria. The periplasmic binding component (or an equivalent membrane-anchored protein) is critical to recognizing cognate ligand and directing it to the appropriate membrane permease. Here we report the X-ray structures of D-xylose binding protein from Escherichia coli in ligand-free open form, ligand-bound open form, and ligand-bound closed form at 2.15 Å, 2.2 Å, and 2.2 Å resolutions, respectively. The ligand-bound open form is the first such structure to be reported at high resolution; the combination of the three different forms from the same protein furthermore gives unprecedented details concerning the conformational changes involved in binding protein function. As is typical of the structural family, the protein has two similar globular domains, which are connected by a three-stranded hinge region. The open liganded structure shows that xylose binds first to the C-terminal domain, with only very small conformational changes resulting. After a 34° closing motion, additional interactions are formed with the N-terminal domain; changes in this domain are larger and serve to make the structure more ordered near the ligand. An analysis of the interactions suggests why xylose is the preferred ligand. Furthermore, a comparison with the most closely related proteins in the structural family shows that the conformational changes are distinct in each type of binding protein, which may have implications for how the individual proteins act in concert with their respective membrane permeases.


Assuntos
Proteínas de Escherichia coli/química , Simportadores/química , Proteínas de Escherichia coli/metabolismo , Ligantes , Proteínas de Membrana Transportadoras , Ligação Proteica , Conformação Proteica , Especificidade por Substrato , Simportadores/metabolismo , Xilose/metabolismo
18.
Thromb Haemost ; 104(3): 544-53, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20664913

RESUMO

Zn2+ ions were found to efficiently inhibit activated protein C (APC), suggesting a potential regulatory function for such inhibition. APC activity assays employing a chromogenic peptide substrate demonstrated that the inhibition was reversible and the apparent K I was 13 +/- 2 microM. k cat was seven fold decreased whereas K M was unaffected in the presence of 10 microM Zn2+. The inhibitory effect of Zn2+ on APC activity was also observed when factor Va was used as a substrate in an assay coupled to a prothrombinase assay. The interaction of Zn2+ with APC was accompanied by a reversible approximately 40% decrease in tryptophan fluorescence, consistent with the ion inducing a conformational change in the protein. The apparent K D was 7.4 +/- 1.5 microM and thus correlated well with the apparent K I. In the presence of physiological Ca2+ concentration the K I and K D values were three to four fold enhanced, presumably due to the Ca2+-induced conformational change affecting the conformation of the Zn2+-binding site. The inhibition mechanism was non-competitive both in the absence and presence of Ca2+. Comparisons of sequences and structures suggested several possible sites for zinc binding. The magnitude of the apparent KI in relation to the blood and platelet concentrations of Zn2+ supports a physiological role for this ion in the regulation of anticoagulant activity of APC. These findings broaden the understanding of this versatile serine protease and enable the future development of potentially more efficient anticoagulant APC variants for treatments of thrombotic diseases.


Assuntos
Cloretos/farmacologia , Inibidores Enzimáticos/farmacologia , Proteína C/antagonistas & inibidores , Compostos de Zinco/farmacologia , Regulação Alostérica , Sítios de Ligação , Coagulação Sanguínea/efeitos dos fármacos , Cálcio/metabolismo , Cloretos/metabolismo , Compostos Cromogênicos/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/metabolismo , Fator Va/metabolismo , Humanos , Cinética , Modelos Moleculares , Oligopeptídeos/metabolismo , Ligação Proteica , Proteína C/química , Proteína C/metabolismo , Conformação Proteica , Ácido Pirrolidonocarboxílico/análogos & derivados , Ácido Pirrolidonocarboxílico/metabolismo , Espectrometria de Fluorescência , Espectrofotometria , Relação Estrutura-Atividade , Compostos de Zinco/metabolismo
19.
Evol Bioinform Online ; 6: 1-26, 2010 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-20454524

RESUMO

Certain species of the fungal genus Trichoderma are potent mycoparasites and are used for biological control of fungal diseases on agricultural crops. In Trichoderma, whole-genome sequencing reveal between 20 and 36 different genes encoding chitinases, hydrolytic enzymes that are involved in the mycoparasitic attack. Sequences of Trichoderma chitinase genes chi18-5, chi18-13, chi18-15 and chi18-17, which all exhibit specific expression during mycoparasitism-related conditions, were determined from up to 13 different taxa and studied with regard to their evolutionary patterns. Two of them, chi18-13 and chi18-17, are members of the B1/B2 chitinase subgroup that have expanded significantly in paralog number in mycoparasitic Hypocrea atroviridis and H. virens. Chi18-13 contains two codons that evolve under positive selection and seven groups of co-evolving sites. Chi18-15 displays a unique codon-usage and contains five codons that evolve under positive selection and three groups of co-evolving sites. Regions of high amino acid variability are preferentially localized to substrate- or product side of the catalytic clefts. Differences in amino acid diversity/conservation patterns between different Trichoderma clades are observed. These observations show that Trichoderma chitinases chi18-13 and chi18-15 evolve in a manner consistent with rapid co-evolutionary interactions and identifies putative target regions involved in determining substrate-specificity.

20.
Plant Mol Biol ; 71(3): 277-89, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19629717

RESUMO

Chitinases help plants defend themselves against fungal attack, and play roles in other processes, including development. The catalytic modules of most plant chitinases belong to glycoside hydrolase family 19. We report here x-ray structures of such a module from a Norway spruce enzyme, the first for any family 19 class IV chitinase. The bi-lobed structure has a wide cleft lined by conserved residues; the most interesting for catalysis are Glu113, the proton donor, and Glu122, believed to be a general base that activate a catalytic water molecule. Comparisons to class I and II enzymes show that loop deletions in the class IV proteins make the catalytic cleft shorter and wider; from modeling studies, it is predicted that only three N-acetylglucosamine-binding subsites exist in class IV. Further, the structural comparisons suggest that the family 19 enzymes become more closed on substrate binding. Attempts to solve the structure of the complete protein including the associated chitin-binding module failed, however, modeling studies based on close relatives indicate that the binding module recognizes at most three N-acetylglucosamine units. The combined results suggest that the class IV enzymes are optimized for shorter substrates than the class I and II enzymes, or alternatively, that they are better suited for action on substrates where only small regions of chitin chain are accessible. Intact spruce chitinase is shown to possess antifungal activity, which requires the binding module; removing this module had no effect on measured chitinase activity.


Assuntos
Quitinases/química , Picea/enzimologia , Proteínas de Plantas/química , Estrutura Terciária de Proteína , Sequência de Aminoácidos , Antifúngicos/farmacologia , Basidiomycota/efeitos dos fármacos , Basidiomycota/crescimento & desenvolvimento , Catálise , Domínio Catalítico , Quitinases/genética , Quitinases/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Picea/genética , Pichia/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Homologia de Sequência de Aminoácidos , Tirosina/genética , Tirosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...