Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cerebellum ; 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37682386

RESUMO

Proprioception from muscle spindles is necessary for motor function executed by the cerebellum. In particular, cerebellar nuclear neurons that receive proprioceptive signals and send projections to the lower brainstem or spinal cord play key roles in motor control. However, little is known about which cerebellar nuclear regions receive orofacial proprioception. Here, we investigated projections to the cerebellar nuclei from the supratrigeminal nucleus (Su5), which conveys the orofacial proprioception arising from jaw-closing muscle spindles (JCMSs). Injections of an anterograde tracer into the Su5 resulted in a large number of labeled axon terminals bilaterally in the dorsolateral hump (IntDL) of the cerebellar interposed nucleus (Int) and the dorsolateral protuberance (MedDL) of the cerebellar medial nucleus. In addition, a moderate number of axon terminals were ipsilaterally labeled in the vestibular group Y nucleus (group Y). We electrophysiologically detected JCMS proprioceptive signals in the IntDL and MedDL. Retrograde tracing analysis confirmed bilateral projections from the Su5 to the IntDL and MedDL. Furthermore, anterograde tracer injections into the external cuneate nucleus (ECu), which receives other proprioceptive input from forelimb/neck muscles, resulted in only a limited number of ipsilaterally labeled terminals, mainly in the dorsomedial crest of the Int and the group Y. Taken together, the Su5 and ECu axons almost separately terminated in the cerebellar nuclei (except for partial overlap in the group Y). These data suggest that orofacial proprioception is differently processed in the cerebellar circuits in comparison to other body-part proprioception, thus contributing to the executive function of orofacial motor control.

2.
Cerebellum ; 22(4): 663-679, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35781609

RESUMO

Proprioceptive sensory information from muscle spindles is essential for the regulation of motor functions. However, little is known about the motor control regions in the cerebellar cortex that receive proprioceptive signals from muscle spindles distributed throughout the body, including the orofacial muscles. Therefore, in this study, we investigated the pattern of projections in the rat cerebellar cortex derived from the supratrigeminal nucleus (Su5), which conveys orofacial proprioceptive information from jaw-closing muscle spindles (JCMSs). Injections of an anterograde tracer into the Su5 revealed that many bilateral axon terminals (rosettes) were distributed in the granular layer of the cerebellar cortex (including the simple lobule B, crus II and flocculus) in a various sized, multiple patchy pattern. We could also detect JCMS proprioceptive signals in these cerebellar cortical regions, revealing for the first time that they receive muscle proprioceptive inputs in rats. Retrograde tracer injections confirmed that the Su5 directly sends outputs to the cerebellar cortical areas. Furthermore, we injected an anterograde tracer into the external cuneate nucleus (ECu), which receives proprioceptive signals from the forelimb and neck muscle spindles, to distinguish between the Su5- and ECu-derived projections in the cerebellar cortex. The labeled terminals from the ECu were distributed predominantly in the vermis of the cerebellar cortex. Almost no overlap was seen in the terminal distributions of the Su5 and ECu projections. Our findings demonstrate that the rat cerebellar cortex receives orofacial proprioceptive input that is processed differently from the proprioceptive signals from the other regions of the body.


Assuntos
Córtex Cerebelar , Fibras Musgosas Hipocampais , Ratos , Animais , Ratos Wistar , Terminações Pré-Sinápticas
3.
Brain Struct Funct ; 227(1): 111-129, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34611777

RESUMO

The supratrigeminal nucleus (Su5) is a key structure for controlling jaw movements; it receives proprioceptive sensation from jaw-closing muscle spindles (JCMSs) and sends projections to the trigeminal motor nucleus (Mo5). However, the central projections and regulation of JCMS proprioceptive sensation are not yet fully understood. Therefore, we aimed to reveal the efferent and afferent connections of the Su5 using neuronal tract tracings. Anterograde tracer injections into the Su5 revealed that the Su5 sends contralateral projections (or bilateral projections with a contralateral predominance) to the Su5, basilar pontine nuclei, pontine reticular nucleus, deep mesencephalic nucleus, superior colliculus, caudo-ventromedial edge of the ventral posteromedial thalamic nucleus, parafascicular thalamic nucleus, zona incerta, and lateral hypothalamus, and ipsilateral projections (or bilateral projections with an ipsilateral predominance) to the intertrigeminal region, trigeminal oral subnucleus, dorsal medullary reticular formation, and hypoglossal nucleus as well as the Mo5. Retrograde tracer injections into the Su5 demonstrated that the Su5 receives bilateral projections with a contralateral predominance (or contralateral projections) from the primary and secondary somatosensory cortices, granular insular cortex, and Su5, and ipsilateral projections (or bilateral projections with an ipsilateral predominance) from the dorsal peduncular cortex, bed nuclei of stria terminalis, central amygdaloid nucleus, lateral hypothalamus, parasubthalamic nucleus, trigeminal mesencephalic nucleus, parabrachial nucleus, juxtatrigeminal region, trigeminal oral and caudal subnuclei, and dorsal medullary reticular formation. These findings suggest that the Su5, which receives JCMS proprioception, has efferent and afferent connections with multiple brain regions that are involved in emotional and autonomic functions as well as orofacial motor functions.


Assuntos
Propriocepção , Animais , Córtex Insular , Núcleos Intralaminares do Tálamo , Neurônios Motores , Fusos Musculares , Vias Neurais , Ratos , Ratos Wistar
4.
Brain Res ; 1739: 146830, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32278724

RESUMO

An invasive intralaminar thalamic stimulation and a non-invasive application of oral splint are both effective in treating tic symptoms of patients with Tourette syndrome (TS). Therefore, these two treatments may exert some influence on the same brain region in TS patients. We thus hypothesized that the proprioceptive input arising from the muscle spindles of jaw-closing muscles (JCMSs), known to be increased by the application of oral splint, is transmitted to the intralaminar thalamic nuclei. To test this issue, we morphologically and electrophysiologically examined the thalamic projections of proprioceptive input from the JCMSs to the intralaminar thalamic nuclei of rats. We first injected an anterograde tracer, biotinylated dextranamine, into the electrophysiologically identified supratrigeminal nucleus, which is known to receive proprioceptive inputs from the JCMSs via the trigeminal mesencephalic neurons. A moderate number of biotinylated dextranamine-labeled axon terminals were bilaterally distributed in the oval paracentral nucleus (OPC) of the intralaminar thalamic nuclei. We also detected electrophysiological responses to the electrical stimulation of bilateral masseter nerves and to sustained jaw-opening in the OPC. After injection of retrograde tracer (cholera toxin B subunit or Fluorogold) into the OPC, neuronal cell bodies were retrogradely labeled in the rostrodorsal portion of the bilateral supratrigeminal nucleus. Here, we show that proprioceptive inputs from the JCMSs are conveyed to the OPC in the intralaminar nuclei via the supratrigeminal nucleus. This study can help to understand previously unrecognized pathways of proprioception ascending inputs from the brainstem to the thalamus, which may contribute to treatments of TS patients.


Assuntos
Núcleos Intralaminares do Tálamo/fisiologia , Arcada Osseodentária/fisiologia , Propriocepção/fisiologia , Animais , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Tronco Encefálico/fisiologia , Córtex Cerebral/fisiologia , Modelos Animais de Doenças , Arcada Osseodentária/inervação , Masculino , Fusos Musculares/fisiologia , Músculo Esquelético/fisiologia , Vias Neurais/fisiologia , Neurônios/fisiologia , Ratos , Ratos Wistar , Núcleos Talâmicos , Síndrome de Tourette/fisiopatologia , Núcleos do Trigêmeo
5.
Brain Res ; 1687: 11-19, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29481796

RESUMO

Our motor behavior can be affected by proprioceptive information. However, little is known about which brain circuits contribute to this process. We have recently revealed that the proprioceptive information arising from jaw-closing muscle spindles (JCMSs) is conveyed to the supratrigeminal nucleus (Su5) by neurons in the trigeminal mesencephalic nucleus (Me5), then to the caudo-ventromedial edge of ventral posteromedial thalamic nucleus (VPMcvm), and finally to the dorsal part of granular insular cortex rostroventrally adjacent to the rostralmost part of secondary somatosensory cortex (dGIrvs2). Our next question is which brain areas receive the information from the dGIrvs2 for the jaw-movements. To test this issue, we injected an anterograde tracer, biotinylated dextranamine, into the dGIrvs2, and analyzed the resultant distribution profiles of the labeled axon terminals. Anterogradely labeled axons were distributed in the pontomedullary areas (including the Su5) which are known to receive JCMS proprioceptive inputs conveyed directly by the Me5 neurons and to contain premotoneurons projecting to the jaw-closing motoneurons in the trigeminal motor nucleus (Mo5). They were also found in and around the VPMcvm. In contrast, no labeled axonal terminals were detected on the cell bodies of Me5 neurons and motoneurons in the Mo5. These data suggest that jaw-movements, which are evoked by the classically defined jaw-reflex arc originating from the peripheral JCMS proprioceptive information, could also be modulated by the transcortical feedback connections from the dGIrvs2 to the VPMcvm and Su5.


Assuntos
Córtex Cerebral/fisiologia , Vias Eferentes/fisiologia , Propriocepção/fisiologia , Olfato/fisiologia , Animais , Biotina/análogos & derivados , Biotina/metabolismo , Dextranos/metabolismo , Arcada Osseodentária/inervação , Masculino , Neurônios Motores/fisiologia , Fusos Musculares/fisiologia , Ratos , Ratos Wistar
6.
Neuroscience ; 365: 158-178, 2017 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-28993238

RESUMO

Little is known about how proprioceptive signals arising from muscles reach to higher brain regions such as the cerebral cortex. We have recently shown that a particular thalamic region, the caudo-ventromedial edge (VPMcvm) of ventral posteromedial thalamic nucleus (VPM), receives the proprioceptive signals from jaw-closing muscle spindles (JCMSs) in rats. In this study, we further addressed how the orofacial thalamic inputs from the JCMSs were transmitted from the thalamus (VPMcvm) to the cerebral cortex in rats. Injections of a retrograde and anterograde neuronal tracer, wheat-germ agglutinin-conjugated horseradish peroxidase (WGA-HRP), into the VPMcvm demonstrated that the thalamic pathway terminated mainly in a rostrocaudally narrow area in the dorsal part of granular insular cortex rostroventrally adjacent to the rostralmost part of the secondary somatosensory cortex (dGIrvs2). We also electrophysiologically confirmed that the dGIrvs2 received the proprioceptive inputs from JCMSs. To support the anatomical evidence of the VPMcvm-dGIrvs2 pathway, injections of a retrograde neuronal tracer Fluorogold into the dGIrvs2 demonstrated that the thalamic neurons projecting to the dGIrvs2 were confined in the VPMcvm and the parvicellular part of ventral posterior nucleus. In contrast, WGA-HRP injections into the lingual nerve area of core VPM demonstrated that axon terminals were mainly labeled in the core regions of the primary and secondary somatosensory cortices, which were far from the dGIrvs2. These results suggest that the dGIrvs2 is a specialized cortical region receiving the orofacial proprioceptive inputs. Functional contribution of the revealed JCMSs-VPMcvm-dGIrvs2 pathway to Tourette syndrome is also discussed.


Assuntos
Córtex Cerebral/fisiologia , Músculos Faciais/inervação , Vias Neurais/fisiologia , Propriocepção/fisiologia , Tálamo/fisiologia , Animais , Mapeamento Encefálico , Estimulação Elétrica , Potenciais Evocados/fisiologia , Músculos Faciais/fisiologia , Lateralidade Funcional , Arcada Osseodentária/fisiologia , Masculino , Ratos , Ratos Wistar , Conjugado Aglutinina do Germe de Trigo-Peroxidase do Rábano Silvestre/metabolismo
7.
Brain Res ; 1346: 69-82, 2010 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-20493176

RESUMO

The roles of supramedullary brain mechanisms involved in the control of jaw movements are not fully understood. To address this issue, a series of retrograde (Fluorogold, FG) and anterograde (biotinylated dextran amine, BDA) tract-tracing studies were done in rats. At first, we identified projection patterns from defined sensorimotor cortical areas to subgroups of trigeminal premotoneurons that are located in defined brainstem areas. Focal injections of FG into these brainstem areas revealed that the rostralmost part of lateral agranular cortex (rmost-Agl), the rostralmost part of medial agranular cortex (rmost-Agm), and the rostralmost part of primary somatosensory cortex (rmost-S1) preferentially project to brainstem areas containing jaw-closing premotoneurons, jaw-opening premotoneurons and a mixture of both types of premotoneurons, respectively. The thalamic reciprocal connectivities to rmost-Agl, rmost-Agm, and rmost-S1 were then investigated following cortical injections of FG or BDA. We found many retrogradely FG-labeled neurons and large numbers of axons and terminals labeled anterogradely with BDA in the dorsal thalamus mainly on the side ipsilateral to the injection sites. The rmost-Agl had strong connections with the ventral lateral nucleus (VL), ventromedial nucleus (VM), parafascicular nucleus, and posterior nucleus (Po); the rmost-Agm with the ventral anterior nucleus, VL, VM, central lateral nucleus, paracentral nucleus, central medial nucleus, mediodorsal nucleus and Po; and the rmost-S1 with the ventral posteromedial nucleus and Po. The present results suggest that the descending multiple pathways from the cerebral cortex to jaw-closing and jaw-opening premotoneurons have unique functional roles in jaw movement motor control.


Assuntos
Córtex Cerebral/fisiologia , Neurônios Motores/fisiologia , Neurônios Aferentes/fisiologia , Neurônios Eferentes/fisiologia , Tálamo/fisiologia , Núcleos do Trigêmeo/fisiologia , Animais , Biotina/análogos & derivados , Tronco Encefálico/citologia , Tronco Encefálico/fisiologia , Córtex Cerebral/citologia , Dextranos , Estimulação Elétrica , Corantes Fluorescentes , Masculino , Córtex Motor/citologia , Córtex Motor/fisiologia , Vias Neurais/fisiologia , Ratos , Ratos Wistar , Córtex Somatossensorial/citologia , Córtex Somatossensorial/fisiologia , Tálamo/citologia , Núcleos do Trigêmeo/citologia
8.
Brain Res ; 1275: 43-53, 2009 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-19393231

RESUMO

To clarify features of direct projections from the primary somatosensory cortex (S1) to premotoneurons for the jaw-closing (JC) and jaw-opening (JO) components of the trigeminal motor nucleus, biotinylated dextranamine (BDA) and Fluorogold (FG) were used as the anterograde and retrograde tracers. The BDA and FG injections were made in the S1 and the JC or JO component, respectively, in rats. The distribution of FG-labeled JC and JO premotoneurons receiving contact(s) from BDA-labeled axon terminals of S1 neurons was quantitatively examined; the contacts were identified microscopically by using a X100 oil immersion objective. The largest and second largest numbers of JC and JO premotoneurons with contact(s) were found in the lateral reticular formation at the levels of the caudal pons and the medulla oblongata (cpmLRt) and trigeminal oral nucleus (Vo) bilaterally, and they comprised about 80% of the total premotoneurons with contact(s). The percentage of premotoneurons with contact(s) was higher in the Vo than in the cpmLRt for both JC and JO premotoneurons. Most of the JC or JO premotoneurons found in the nucleus of the solitary tract, inter- and supratrigeminal regions, mesencephalic trigeminal nucleus, parabrachial nucleus and reticular formation medial to the JO component of the trigeminal motor nucleus hardly received contact(s) from S1 neurons. This suggests that the contribution of S1 to the control of jaw movements is mediated via JC and JO premotoneurons located primarily in the cpmLRt and Vo areas of the brainstem.


Assuntos
Arcada Osseodentária/inervação , Arcada Osseodentária/fisiologia , Neurônios Motores/fisiologia , Terminações Pré-Sinápticas/fisiologia , Córtex Somatossensorial/fisiologia , Animais , Masculino , Movimento/fisiologia , Vias Neurais/fisiologia , Neurônios/fisiologia , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA