Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 52(30): 10338-10347, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37458103

RESUMO

Cobalt bis(dicarbollide) (COSAN) is a metallacarborane used as a versatile pharmacophore to prepare biologically active hybrid organic-inorganic compounds or to improve the pharmacological properties of nucleosides, antisense oligonucleotides, and DNA intercalators. Despite these applications, COSAN interactions with nucleic acids remain unclear, limiting further advances in metallacarborane-based drug development. Although some studies showed that COSAN intercalates into DNA, COSAN-containing intercalators do not, and while COSAN shows low cytotoxicity, intercalators are often highly toxic. The present study aimed at comprehensively characterizing interactions between COSAN and DNA using a wide range of techniques, including UV-Vis absorption, circular (CD) and linear (LD) dichroism, nuclear magnetic resonance (NMR) spectroscopy, thermal denaturation, viscosity, differential scanning calorimetry (DSC), isothermal titration calorimetry (ITC), and equilibrium dialysis measurements. Our results showed that COSAN has no effect on DNA structure, length, stability, or hybridization, with no or only faint signs of COSAN binding to DNA. Moreover, DNA is not necessary for COSAN to induce cytotoxicity at high concentrations, as shown by in vitro experiments. These findings demonstrate that COSAN is a DNA-neutral pharmacophore, thus confirming the general safety and biocompatibility of metallacarboranes and opening up new opportunities for further developing metallacarborane-based drugs.


Assuntos
Cobalto , Farmacóforo , Cobalto/química , Substâncias Intercalantes , DNA/química , Dicroísmo Circular
2.
Langmuir ; 39(28): 9757-9772, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37399547

RESUMO

The use of polymer gels for the removal of toxic chemicals from wastewater is an important area in terms of both academic and industrial research. This work presents a simple approach to the fabrication of chemically cross-linked cationic hydrogel adsorbents using designed ionic liquid-based cross-linkers and their successful use in the removal of organic dyes. Two different ionic liquid cross-linkers, [VIm-4VBC][Cl] (ILA)/[DMAEMA-4VBC][Cl] (ILB), are synthesized by the simple nucleophilic substitution reaction of 4-vinylbenzyl chloride (4VBC) separately with 1-vinylimidazole (VIm) and 2-(dimethylamino)ethyl methacrylate (DMAEMA). Cross-linked poly(acrylamide) (CPAam) and poly(2-hydroxyethyl methacrylate) (CPHEMA) hydrogels are then prepared from the corresponding monomers and as-synthesized cross-linkers (ILA and ILB) by free radical polymerization in the presence of a redox initiator combining ammonium persulfate (APS) and N,N,N',N'-tetramethylethylenediamine (TEMED). The dried CPAam and CPHEMA xerogels exhibit macroporous morphology and high thermal stability. The hydrogel samples exhibit high swelling behavior, and the diffusion of water molecules into the hydrogels follows pseudo-Fickian kinetics. The cationic cross-linking sites in the hydrogel networks allow preferable binding with anionic dyes, and these dye uptake capacities are determined using different model anionic dyes via UV-vis spectroscopy. The dye adsorption onto these hydrogels follows a pseudo-second-order kinetic model. The adsorption mechanism is also analyzed by employing intraparticle diffusion and Boyd kinetic models. The relationship between the maximum equilibrium adsorption capacity (qm) of the hydrogels for eosin B (EB) dye and the equilibrium EB concentration can be better described by Langmuir and Freundlich isotherm models, and the estimated qm using the Langmuir isotherm can reach more than 100 mg g-1. The cross-linked hydrogels can be easily regenerated and have a recycling efficiency of >80% for up to three consecutive dye adsorption-desorption cycles, which is promising for their use in wastewater treatment.

3.
Pharmaceutics ; 15(1)2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36678912

RESUMO

Stimuli-responsive copolymers are of great interest for targeted drug delivery. This study reports on a controllable post-polymerization quaternization with 2-bromomethyl-4-fluorophenylboronic acid of the poly(4-vinyl pyridine) (P4VP) block of a common poly(styrene)-b-poly(4-vinyl pyridine)-b-poly(ethylene oxide) (SVE) triblock terpolymer in order to achieve a selective responsivity to various diols. For this purpose, a reproducible method was established for P4VP block quaternization at a defined ratio, confirming the reaction yield by 11B, 1H NMR. Then, a reproducible self-assembly protocol is designed for preparing stable micelles from functionalized stimuli-responsive triblock terpolymers, which are characterized by light scattering and by cryogenic transmission electron microscopy. In addition, UV-Vis spectroscopy is used to monitor the boron-ester bonding and hydrolysis with alizarin as a model drug and to study encapsulation and release of this drug, induced by sensing with three geminal diols: fructose, galactose and ascorbic acid. The obtained results show that only the latter, with the vicinal diol group on sp2-hybridized carbons, was efficient for alizarin release. Therefore, the post-polymerization method for triblock terpolymer functionalization presented in this study allows for preparation of specific stimuli-responsive systems with a high potential for targeted drug delivery, especially for cancer treatment.

4.
Chemistry ; 26(63): 14283-14289, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-32492217

RESUMO

Boron-rich particles with the boron fraction ca.10-20 wt % of controllable shape and size that can be easily prepared via simple ion co-assembly are promising material for tumor treatment by boron neutron capture therapy. Electroneutral, dynamic core-shell polymeric nanoparticles were prepared by co-assembly of cationic PEO-block-PGEA diblock copolymer with sodium closo-dodecaborate, Na2 [B12 H12 ]. This is the first example of polymer nanoparticles based on [B12 H12 ]2- nano-ion pairing. The high [B12 H12 ]2- loading is proven by calorimetry at physiological salt concentration. As a result of rational design, rod-, worm- and sphere-like particles were produced and further tested using human glioblastoma and cervical carcinoma cell lines. Rod-like particles yielded the highest internalization capability in all tested cell lines.

5.
J Colloid Interface Sci ; 546: 371-380, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30933716

RESUMO

Hydrophobicity of a counterion has a profound effect on the interaction with polyelectrolytes similar to that of multivalency. Specifically, understanding this interaction in weak polyelectrolyte micelles might assist in developing nanocarriers for pH-controlled encapsulation and release. We used star-like weak polyelectrolyte micelles of polystyrene-block-poly(2-vinyl pyridine) (PS-P2VP) with fixed aggregation number as a model polyelectrolyte, and cobalt bis(1,2-dicarbollide) (COSAN) as a model hydrophobic anion. We used NMR to assess the mobility of the polymer segments in the presence of varying amounts of COSAN, and at varying protonation degrees of the polyelectrolyte. Same experiments with indifferent electrolyte (NaCl) were used as a control. Furthermore, we used coarse-grained simulations to obtain a detailed picture of the effect of hydrophobic counterions on the conformation of the micelles. A small amount of hydrophobic counterions causes morphological changes within the micelles, whereas a bigger amount causes precipitation. This was confirmed both in simulations and in experiments. Furthermore, adsorption of the counterions induces ionization of the collapsed segments of the polyelectrolyte. Although the COSAN/P2VP system is rather specific, the generic model used in the coarse-grained simulations shows that the observed behavior is a consequence of synergy of hydrophobic and electrostatic attraction between polyelectrolytes and hydrophobic counterions. Our study provides general insights into the molecular mechanisms of these interactions.

6.
Chem Commun (Camb) ; 55(20): 2900-2903, 2019 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-30698594

RESUMO

Hybrid nanocomposites are multiphase systems with a wide range of applications. Some nanocomposites are water insoluble thereby preventing several applications. Thus, we prepared telechelic PEO with glucose molecules to form water-soluble lamellar nanostructures by co-assembly with metallacarborane. The lamellas formed by PEO/metallacarborane decorated by glucose molecules on the surface can serve as delivery agents for boron clusters and benzoxaboroles.

7.
Langmuir ; 34(47): 14448-14457, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30343575

RESUMO

Isothermal titration calorimetry (ITC) is an apt tool for a total thermodynamic description of self-assembly of atypical amphiphiles such as anionic boron cluster compounds (COSAN) in water. Global fitting of ITC enthalpograms reveals remarkable features that differentiate COSAN from classical amphiphiles: (i) strong enthalpy and weak entropy contribution to the free energy of aggregation, (ii) low degree of counterion binding, and (iii) very low aggregation number, leading to deviations from the ideal closed association model. The counterion condensation obtained from the thermodynamic model was compared with the results of 7Li DOSY NMR of Li[COSAN] micelles, which allows direct tracking of Li cations. The basic thermodynamic study of COSAN alkaline salt aggregation was complemented by NMR and ITC experiments in dilute Li/NaCl and acetonitrile aqueous solutions of COSAN. The strong affinity of acetonitrile molecules to COSAN clusters was microscopically investigated by all-atomic molecular dynamics simulations. The impact of ionic strength on COSAN self-assembling was comparable to the behavior of classical amphiphiles, whereas even a small amount of acetonitrile cosolvent has a pronounced nonclassical character of COSAN aggregation. It demonstrates that large self-assembling changes are triggered by traces of organic solvents.

8.
Nanoscale ; 10(18): 8428-8442, 2018 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-29666865

RESUMO

The present study describes the synthesis, self-assembly and responsiveness to glucose and lactic acid of biocompatible and biodegradable block copolymer micelles using phenylboronic ester as the linkage between hydrophobic poly(ε-caprolactone) (PCL) and hydrophilic poly(ethylene oxide) (PEO). The PCL block with pendant phenylboronic acid (PCLBA) was synthesized by combining ε-caprolactone (ε-CL) ring-opening polymerisation (ROP), using 4-hydroxymethyl(phenylboronic) acid pinacolate as the initiator, and pinacol deprotection. The glucose-terminated PEO (PEOGlc) was prepared by 1,3-dipolar, Cu(i)-catalysed, alkyne-azide cycloaddition of α-methoxy-ω-propargyl poly(ethylene oxide) and 1-azido-1-deoxy-d-glucopyranose. All new compounds were evaluated by 1H NMR spectroscopy and by SEC analysis. PCLBA and PEOGlc blocks were linked in NaOH acetone solution, which was indirectly confirmed by Alizarin Red S fluorescence and directly by 1H NMR spectroscopy. Dialysis against Milli-Q water induced the self-assembly of PCLBA-b-PEOGlc nanoparticles, which were characterised by static (SLS) and dynamic (DLS) light scattering and by cryogenic transmission electron microscopy (cryo-TEM). Furthermore, the microscopic properties of the charged interface between the hydrophobic PCLBA core and the hydrophilic PEOGlc shell were examined by electrophoretic light scattering (zeta potential) and by fluorescence spectroscopy using the fluorescent probe 5-(N-dodecanoyl)aminofluorescein (DAF) as a pH indicator. Subsequently, the nanoparticles were transferred to a phosphate buffer saline (PBS) solution supplemented with different concentrations of glucose to simulate the physiological conditions in blood or lactic acid to simulate acidic cytosolic or endosomal conditions in tumour cells. Adding a surplus of glucose or lactic acid, which competitively binds to PBA, removes the stabilising hydrophilic PEOGlc blocks, thereby triggering marked nanoparticle aggregation. However, the rate of aggregation induced by lactic acid is considerably faster than that induced by glucose, as confirmed by light scattering. Thus, this novel block copolymer may contribute to the field of selective, lactic acid- and/or glucose-responsive drug delivery vehicle design under both pathological and physiological conditions.

9.
Chem Asian J ; 13(7): 838-845, 2018 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-29384259

RESUMO

Thermoresponsive nanoparticles based on the interaction of metallacarboranes, bulky chaotropic and surface-active anions, and poly(2-alkyl-2-oxazoline) block copolymers were prepared. Recently, the great potential of metallacarboranes have been recognized in biomedicine and many delivery nanosystems have been proposed. However, none of them are thermoresponsive. Therefore, a thermoresponsive block copolymer, poly(2-methyl-2-oxazoline)-block-poly(2-n-propyl-2-oxazoline) (PMeOx-PPrOx), was synthesized to encapsulate metallacarboranes. Light scattering, NMR spectroscopy, isothermal titration calorimetry, and cryogenic TEM were used to characterize all solutions of the formed nanoparticles. The cloud-point temperature (TCP ) of the block copolymer was observed at 30 °C and polymeric micelles formed above this temperature. Cobalt bis(dicarbollide) anion (COSAN) interacts with both polymeric segments. Depending on the COSAN concentration, this affinity influenced the phase transition of the thermoresponsive PPrOx block. The TCP shifted to lower values at a lower COSAN content. At higher COSAN concentrations, the hybrid nanoparticles are fragmented into relatively small pieces. This system is also thermoresponsive, whereby an increase in temperature leads to higher polymer mobility and COSAN release.

10.
Langmuir ; 34(12): 3541-3554, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29144761

RESUMO

Anionic boron cluster compounds (ABCCs) are intrinsically amphiphilic building blocks suitable for nanochemistry. ABCCs are involved in atypical weak interactions, notably dihydrogen bonding, due to their peculiar polyhedral structure, consisting of negatively charged B-H units. The most striking feature of ABCCs that differentiates them from typical surfactants is the lack of head-and-tail structure. Furthermore, their structure can be described as intrinsically amphiphilic or aquaneutral. Therefore, classical terms established to describe self-assembly of classical amphiphiles are insufficient and need to be reconsidered. The opinions and theories focused on the solution behavior of ABCCs are briefly discussed. Moreover, a comparison between ABCCs with other amphiphilic systems is made focusing on the explanation of enthalpy-driven micellization or relations between hydrophobic and chaotropic effects. Despite the unusual structure, ABCCs still show self- and coassembly properties comparable to classical amphiphiles such as ionic surfactants. They self-assemble into micelles in water according to the closed association model. The most typical features of ABCCs solution behavior is demonstrated on calorimetry, NMR spectroscopy, and tensiometry experiments. Altogether, the unique features of ABCCs makes them a valuable inclusion into the nanochemisty toolbox to develop novel nanostructures both alone and with other molecules.

11.
Mater Sci Eng C Mater Biol Appl ; 67: 486-492, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27287146

RESUMO

A simple procedure for the synthesis of magnetic fluid (ferrofluid) stabilized by poly(methacrylic acid) has been developed. This ferrofluid was used to prepare a novel type of magnetically responsive chitosan-based composite material. Both ferrofluid and magnetic chitosan composite were characterized by a combination of microscopy (optical microscopy, TEM, SEM), scattering (static and dynamic light scattering, SANS) and spectroscopy (FTIR) techniques. Magnetic chitosan was found to be a perspective material for various bioapplications, especially as a magnetic carrier for immobilization of enzymes and cells. Lipase from Candida rugosa was covalently attached after cross-linking and activation of chitosan using glutaraldehyde. Baker's yeast cells (Saccharomyces cerevisiae) were incorporated into the chitosan composite during its preparation; both biocatalysts were active after reaction with appropriate substrates.


Assuntos
Candida/enzimologia , Quitosana/química , Proteínas Fúngicas/química , Lipase/química , Magnetismo , Ácidos Polimetacrílicos/química , Células Imobilizadas/citologia , Células Imobilizadas/metabolismo , Enzimas Imobilizadas/química , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo
12.
Langmuir ; 32(26): 6713-22, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27287067

RESUMO

This is the first experimental evidence that both self-assembly and surface activity are common features of all water-soluble boron cluster compounds. The solution behavior of anionic polyhedral boranes (sodium decaborate, sodium dodecaborate, and sodium mercaptododecaborate), carboranes (potassium 1-carba-dodecaborate), and metallacarboranes {sodium [cobalt bis(1,2-dicarbollide)]} was extensively studied, and it is evident that all the anionic boron clusters form multimolecular aggregates in water. However, the mechanism of aggregation is dependent on size and polarity. The series of studied clusters spans from a small hydrophilic decaborate-resembling hydrotrope to a bulky hydrophobic cobalt bis(dicarbollide) behaving like a classical surfactant. Despite their pristine structure resembling Platonic solids, the nature of anionic boron cluster compounds is inherently amphiphilic-they are stealth amphiphiles.

13.
Langmuir ; 32(16): 4059-65, 2016 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-27054848

RESUMO

Interaction of polystyrene-block-poly(methacrylic acid) micelles (PS-PMAA) with cationic surfactant N-dodecylpyridinium chloride (DPCl) in alkaline aqueous solutions was studied by static and dynamic light scattering, SAXS, cryogenic transmission electron microscopy (cryo-TEM), isothermal titration calorimetry (ITC), and time-resolved fluorescence spectroscopy. ITC and fluorescence measurements show that there are two distinct regimes of surfactant binding in the micellar corona (depending on the DPCl content) caused by different interactions of DPCl with PMAA in the inner and outer parts of the corona. The compensation of the negative charge of the micellar corona by DPCl leads to the aggregation of PS-PMAA micelles, and the micelles form colloidal aggregates at a certain critical surfactant concentration. SAXS shows that the aggregates are formed by individual PS-PMAA micelles with intact cores and collapsed coronas interconnected with surfactant micelles by electrostatic interactions. Unlike polyelectrolyte-surfactant complexes formed by free polyelectrolyte chains, the PMAA/DPCl complex with collapsed corona does not contain surfactant micelles.

14.
Angew Chem Int Ed Engl ; 54(47): 14113-7, 2015 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-26425966

RESUMO

The self-assembly of metallacarboranes, a peculiar family of compounds exhibiting surface activity and resembling molecular-scale Pickering stabilizers, has been investigated by comparison to the micellization of sodium dodecylsulfate (SDS). These studies have shown that molecules without classical amphiphilic topology but with an inherent amphiphilic nature can behave similarly to classical surfactants. As shown by NMR techniques, the self-assembly of both metallacarboranes and SDS obey a closed association model. However, the aggregation of metallacarboranes is found to be enthalpy-driven, which is very unusual for classical surfactants. Possible explanations of this fact are outlined.

15.
Biomacromolecules ; 16(12): 3731-9, 2015 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-26509848

RESUMO

Coassembly behavior of the double hydrophilic block copolymer poly(4-hydroxystyrene)-block-poly(ethylene oxide) (PHOS-PEO) with three amphiphilic phenylboronic acids (PBA) differing in hydrophobicity, 4-dodecyloxyphenylboronic acid (C12), 4-octyloxyphenylboronic acid (C8), and 4-isobutoxyphenylboronic acid (i-Bu) was studied in alkaline aqueous solutions and in mixtures of NaOHaq/THF by spin-echo (1)H NMR spectroscopy, dynamic and electrophoretic light scattering, and SAXS. The study reveals that only the coassembly of C12 with PHOS-PEO provides spherical nanoparticles with intermixed PHOS and PEO blocks, containing densely packed C12 micelles. NMR measurements have shown that spatial proximity of PHOS-PEO and C12 leads to the formation of ester bonds between -OH of PHOS block and hydroxyl groups of -B(OH)2. Due to the presence of PBA moieties, the release of compounds with 1,2- or 1,3-dihydroxy groups loaded in the coassembled PHOS-PEO/PBA nanoparticles by covalent binding to PBA can be triggered by addition of a surplus of glucose that bind to PBA competitively. The latter feature has been confirmed by fluorescence measurements using Alizarin Red as a model compound. Nanoparticles were proved to exhibit swelling in response to glucose as detected by light scattering.


Assuntos
Ácidos Borônicos/química , Glucose/química , Insulina/química , Nanopartículas/química , Fenóis/química , Polietilenoglicóis/química , Antraquinonas/química , Preparações de Ação Retardada , Liberação Controlada de Fármacos , Cinética , Micelas , Nanopartículas/ultraestrutura , Polimerização , Soluções , Água
16.
Chemistry ; 20(22): 6786-94, 2014 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-24737689

RESUMO

The anion [3,3'-Co(C2B9H11)2](-) ([COSAN](-)) produces aggregates in water. These aggregates are interpreted to be the result of C-H⋅⋅⋅H-B interactions. It is possible to generate aggregates even after the incorporation of additional functional groups into the [COSAN](-) units. The approach is to join two [COSAN](-) anions by a linker that can adapt itself to act as a crown ether. The linker has been chosen to have six oxygen atoms, which is the ideal number for K(+) selectivity in crown ethers. The linker binds the alkaline metal ions with different affinities; thus showing a distinct degree of selectivity. The highest affinity is shown towards K(+) from a mixture containing Li(+), Na(+), K(+), Rb(+) and Cs(+); this can be indicative of pseudo-crown ether performance of the dumbbell. One interesting possibility is that the [COSAN](-) anions at the two ends of the linker can act as a hook-and-loop fastener to close the ring. This facet is intriguing and deserves further consideration for possible applications. The distinct affinity towards alkaline metal ions is corroborated by solubility studies and isothermal calorimetry thermograms. Furthermore, cryoTEM micrographs, along with light scattering results, reveal the existence of small self-assemblies and compact nanostructures ranging from spheres to single-/multi-layer vesicles in aqueous solutions. The studies reported herein show that these dumbbells can have different appearances, either as molecules or aggregates, in water or lipophilic phases; this offers a distinct model as drug carriers.

17.
ACS Macro Lett ; 3(11): 1151-1155, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-35610814

RESUMO

One strategy to control the morphology of hybrid polymeric nanostructures is the proper selection of macromolecule architecture. We prepared metallacarborane-rich nanoparticles by interaction of double-hydrophilic block copolymers consisting of both poly(2-alkyl oxazolines) and poly(ethylene oxide) blocks with cobaltabisdicarbollide anion in physiological saline. The inner structure of the hybrid nanoparticles was studied by cryo-TEM, light scattering, SAXS, NMR, and ITC. Although the thermodynamics of diblock and star-like systems are almost identical, the macromolecular architecture has a great impact on the size and inner morphology of the nanoparticles. While hybrid nanoparticles formed by linear diblock copolymers are homogeneous, resembling gel-like nanospheres, the star-like shape of 4-arm block copolymers with PEO blocks in central parts of macromolecules leads to distinct compartmentalization. Because metallacarboranes are promising species in medicine, the studied nanoparticles are important for targeted drug delivery of boron cluster compounds.

18.
J Colloid Interface Sci ; 348(1): 129-36, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20447643

RESUMO

We prepared nanoparticles differing in morphology from double-hydrophilic block copolymer poly(ethylene oxide)-block-poly(methacrylic acid), PEO-PMA, and two types of fluorescein-[3-cobalt(III) bis(1,2-dicarbollide)] conjugates, GB176 and GB179, in alkaline buffer. GB176 molecule consists of fluorescein attached to the metallacarborane anion. In GB179 molecule, the fluorescein moiety connects two metallacarborane anions. The self-assembly is based on the unusual interaction of metallacarborane clusters with PEO blocks which form insoluble micellar cores. The GB176 containing nanoparticles are loose and irregular, while the GB179 ones are rigid and spherical. The structure of nanoparticles depends to some extent on a procedure of preparation. The micelles were studied by static and dynamic light scattering, fluorometry and atomic force microscopy. Since the metallacarborane conjugates act as potent inhibitors of HIV protease, the presented system is important from the point of view of drug delivery.


Assuntos
Inibidores da Protease de HIV/análise , Sondas Moleculares/química , Nanopartículas/química , Compostos de Boro , Fluorescência , Humanos , Metais , Metacrilatos , Micelas , Poliésteres , Polietilenoglicóis
19.
Langmuir ; 26(9): 6268-75, 2010 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-20085334

RESUMO

We prepared two fluorescein-[3-cobalt(III) bis(1,2-dicarbollide)](-) conjugates. They are sparingly soluble in water and form large aggregates in aqueous solutions. An extensive study on their spectral and aggregation behavior was carried out. To prepare their well-defined dispersion in aqueous systems, we studied the interaction of both probes with two biocompatible amphiphilic systems, cyclodextrins, which are frequently used in drug-delivery systems, and phospholipid membranes, which are the major constituents of cell barriers in living organisms. The presence of fluorescein in both conjugates allows us to study their behavior in detail by steady-state and time-resolved fluorometry, fluorescence correlation spectroscopy, and fluorescence lifetime imaging. The self-assembly of these metallacarboranes in aqueous solutions was studied by dynamic light scattering. The study shows that the compounds interact with cyclodextrins that increases their solubility in water, and they solubilize easily in phospholipid bilayers.


Assuntos
Ciclodextrinas/metabolismo , Corantes Fluorescentes/metabolismo , Luz , Bicamadas Lipídicas/metabolismo , Compostos Organometálicos/metabolismo , Fosfolipídeos/metabolismo , Espalhamento de Radiação , Membrana Celular/metabolismo , Corantes Fluorescentes/química , Modelos Moleculares , Conformação Molecular , Compostos Organometálicos/química , Espectrometria de Fluorescência , Água/química
20.
Langmuir ; 24(20): 12017-25, 2008 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-18816020

RESUMO

The amphiphilic polystyrene- block-poly((sulfamate-carboxylate)isoprene) (PS-PISC) diblock copolymer was synthesized from the precursor diblock copolymer polystyrene- block-isoprene by reaction with chlorosulfonyl isocyanate. The structure and behavior of self-assembled PS-PISC nanoparticles was studied in alkaline and acidic aqueous solutions by a combination of static and dynamic light scattering, analytical ultracentrifugation, atomic force and cryogenic transmission electron microscopies, NMR spectroscopy, potentiometric titration, and fluorometry using pyrene as a polarity-sensitive fluorescent probe. It was found that PS-PISC exists in aqueous solutions in the form of micellar aggregates. The aggregation tendency increases with decreasing effective charge density in the shell, that is, with decreasing pH of the solution, and aggregates found in alkaline aqueous media have much smaller molar masses than those formed in acidic media. The latter are dense, collapsed structures with immobile PISC domains in which most of the COOH and NH 2 (+)SO 3 (-) groups are buried inside of the nanoparticles. The swelling of PISC domains and disentanglement of PISC chains after addition of a base are slow processes occurring on the time scale of days.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...