Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 630(Pt A): 70-80, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36215825

RESUMO

Rational design and synthesis of multifunctional electrocatalysts with high electrochemical activity and low cost are significantly important for new-generation lithium-sulfur (Li-S) batteries. Herein, N-doped FeP nanospheres decorated N doped carbon matrix is successfully synthesized by facile one-pot pyrolysis and in-situ phosphorization technique to mitigate the conversion kinetics and suppress the shuttle effect. The large specific surface area with mesopores can incorporate up to 81.5% sulfur, with the conductive carbon and nitrogen co-matrix providing Li+/e- passage and fastening the redox kinetics. The remarkable adsorption properties and the electrocatalytic activity through physical confinement and chemical immobilization is thoroughly verified. Consequently, the FeP/CN@S deliver a high reversible capacity of 1183 mAh g-1 at 0.1C compared to Co/P/CN@S (961 mAh g-1); whereas, at 1C, a negligible decay rate of 0.04% is observed for 1000 cycles, possessing outstanding cycling stability and rate capability. Hence, the cost-effective in-situ phosphorization strategy to synthesize FeP/CN@S as an efficient nanoreactor is constructive to be applied in Li-S batteries.

2.
Nanoscale ; 10(36): 17140-17147, 2018 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-30183046

RESUMO

Designing a self-assembling structure for a Pt-based catalyst offers a great opportunity to enhance the electrocatalytic performance and maximize the use of precious metals. Herein, we report an etching method based on thermal treatment for the removal of less active metals from Pt-based alloys for the enhancement of the oxygen reduction reaction. PtPdAg nanostructures' self-assembly can be easily controlled to the dimer stage or nanowires by stirring the nanoparticles in formamide with or without potassium iodide under heat for specific times. Thus oxygen reduction reaction-favoring PtPdAg hollow nanoparticle, nanodimer and nanowire catalysts are synthesized, all of which have been demonstrated to be promoting factors for the ORR. In a Pt-based catalyst, the arrangement and configuration of the surface or topmost few layer atoms influence the adsorption of oxygen and activation for ORR. The PtPdAg dimer catalyst shows excellent ORR activity compared to other PtPdAg nanostructures and commercial Pt/C i.e. 7.2 times higher specific activity and 4.1 times higher mass activity. We further carried out DFT calculations and from the results, we conclude that the most chemically inequivalent structure such as PtPdAg/C nanodimer alloys possesses the weakest oxygen binding energy.

3.
Chem Soc Rev ; 47(16): 6175-6200, 2018 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-29611858

RESUMO

Two-dimensional nanomaterials, particularly multimetallic nanosheets with single or few atoms thickness, are attracting extensive research attention because they display remarkable advantages over their bulk counterparts, including high electron mobility, unsaturated surface coordination, a high aspect ratio, and distinctive physical, chemical, and electronic properties. In particular, their ultrathin thickness endows them with ultrahigh specific surface areas and a relatively high surface energy, making them highly favorable for surface active applications; for example, they have great potential for a broad range of fuel cell applications. First, the state-of-the-art research on the synthesis of nanosheets with a controlled size, thickness, shape, and composition is described and special emphasis is placed on the rational design of multimetallic nanosheets. Then, a correlation is performed with the performance of multimetallic nanosheets with modified and improved electrochemical properties and high stability, including for the oxygen reduction reaction (ORR), hydrogen evolution reaction (HER), formic acid oxidation (FAO), methanol oxidation reaction (MOR), ethanol oxidation reaction (EOR), and methanol tolerance are outlined. Finally, some perspectives and advantages offered by this class of materials are highlighted for the development of highly efficient fuel cell electrocatalysts, featuring low cost, enhanced performance, and high stability, which are the key factors for accelerating the commercialization of future promising fuel cells.

4.
Nanoscale ; 10(12): 5658-5666, 2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29528345

RESUMO

A hierarchical excavated iron-nitrogen codoped mesoporous carbon (Ex-FeN-MC) electrocatalyst has been successfully synthesized by pyrolysis of the unique ureidopyrimidinone containing organic precursor MAMIS by using silica as the mesoporous template and iron nitrate as the source of iron. The selected organic precursor has multifunctionalities with diverse distribution of nitrogen and oxygen species which constitute interesting features to prepare the Ex-FeN-MC electrocatalyst. The as-prepared Ex-FeN-MC material shows unexpectedly higher catalytic activities towards ORR/OER performances with an overpotential of 250 mV for OER in alkaline solution at a current density of 10 mA cm-2, while the ORR activity is almost similar to that of commercial Pt/C. It is believed that the excellent electrochemical performance results from the synergic contribution of the hierarchical uniform mesoporous structure, evenly distributed iron nanoparticles and high density of Ex-FeN-MC catalytically active sites. The presence of the hierarchical uniform mesoporous structure considerably accelerates the mass transfer and efficiently promotes the full utilization of active sites. Furthermore, it also possesses amorphous carbon in coexistence with lattice graphitic carbon which also enhanced the ORR/OER performances. Our research findings can surely provide a new insight to design highly active ORR/OER electrocatalysts by utilizing more novel organic precursors to provide interesting characteristics to electrocatalysts, as well as open up a route for constructing unique multifunctional materials with mesoporous architectures for electrocatalysis and supercapacitor applications.

5.
ACS Appl Mater Interfaces ; 10(11): 9407-9414, 2018 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-29468865

RESUMO

Development of efficient electrocatalysts for oxygen evolution reaction (OER) is of great significance for future renewable energy applications. Herein, efficient OER electrocatalysts based on iron hydroxide-modified nickel hydroxylphosphate (NiPO/Fe(OH) x) single-wall nanotubes (SWNTs) have been prepared by a facile stepwise surfactant-free solvothermal strategy, which possess diameters of about 6 nm and lengths of about several micrometers. Benefiting from the synergistic effect between iron hydroxides and NiPO SWNTs, the as-prepared NiPO/Fe(OH) x SWNTs exhibit higher OER activity than primary NiPO SWNTs. Furthermore, the OER activity with different Fe contents displays a volcano-type shape, and the optimized NiPO/Fe(OH) x SWNTs present excellent activity with a low overpotential of 248 mV to deliver a current density of 10 mA cm-2 and 323 mV to achieve a large current density of 100 mA cm-2, as well as a remarkably low Tafel slope of 45.4 mV dec-1 in 1 M KOH electrolyte. The present work provides valuable insights to improve the OER performance by rational surface modification.

6.
Nanoscale ; 9(35): 13334-13340, 2017 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-28858367

RESUMO

Ultrathin nanocrystals generally provide a remarkable catalytic performance due to their high specific surface area and exposure of certain active sites. However, deactivation caused by growth and gathering limits the catalytic application of ultrathin nanocrystals. Here we report Ag nanocrystal-decorated polyoxometalate (Ag-POM) single-walled nanotubes assembled via a concise, surfactant-free soaking method as a new kind of well-defined core-sheath nanoreactor. The diameter of Ag nanocrystals inside polyoxometalate nanotubes can be controlled via simply adjusting the reactant concentration. Ag-POM provided outstanding oxidative desulfurization (ODS) catalytic performance for aromatic sulfocompounds at room temperature. It was suggested that Ag nanocrystals decorated on the inner surface played a key role in adjusting the electronic distribution and enhancing the catalytic activity. The as-prepared Ag-POM nanotubes are promising candidate catalysts with enhanced performance for practical catalytic applications in the gasoline desulfurization industry.

7.
Chem Sci ; 8(6): 4292-4298, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28626567

RESUMO

Mechanistic control is a powerful means for manufacturing specific shapes of metal nanostructures and optimizing their performance in a variety of applications. Thus, we successfully synthesized multimetallic nanoplates (PtAgBiCo and PtAgBi) by combining the concepts of crystal symmetry, oxidative etching and seed ratio, and tuned their activity, stability and methanol tolerance, as well as Pt utilization, for the oxygen reduction reaction in direct methanol fuel cells. Systematic studies reveal that the formation of PtAgBiCo triangular nanoplates with a high morphological yield (>90%) can be achieved by crystallinity alteration, while electrochemical measurements indicate that the PtAgBiCo nanoplates have superior electrocatalytic activity towards the oxygen reduction reaction. The specific and mass activity of the PtAgBiCo nanoplates are 8 and 5 times greater than that of the commercial Pt/C catalyst, respectively. In addition, the tetrametallic PtAgBiCo nanoplates exhibit a more positive half-wave potential for the oxygen reduction reaction and possess an excellent methanol tolerance limit compared with the commercial Pt/C catalyst.

8.
Adv Mater ; 29(8)2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27943480

RESUMO

Porous PtCuBiMn nanosheets are developed with a thickness of ≈3-4 nm. The specific and mass activities of these nanosheets are ten and seven times greater than that of commercial Pt/C catalyst, respectively. PtCuBiMn nanosheets demonstrate superior catalytic performance for the oxygen reduction reaction, as well as resistance to methanol cross-over effects, suggesting that it is a promising catalyst for direct methanol fuel cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA