Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Physica A ; 604: 127915, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35874925

RESUMO

In this work, we construct a new SARS-CoV-2 mathematical model of SQIR type. The considered model has four compartments as susceptible S , quarantine Q , infected I and recovered R . Here saturated nonlinear incidence rate is used for the transmission of the disease. We formulate our model first and then the disease-free and endemic equilibrium (EE) are calculated. Further, the basic reproduction number is computed via the next generation matrix method. Also on using the idea of Dulac function, the global stability for the proposed model is discussed. By using the Routh-Hurwitz criteria, local stability is investigated. Through nonstandard finite difference (NSFD) scheme, numerical simulations are performed. Keeping in mind the significant importance of fractional calculus in recent time, the considered model is also investigated under fractional order derivative in Caputo sense. Finally, numerical interpretation of the model by using various fractional order derivatives are provided. For fractional order model, we utilize fractional order NSFD method. Comparison with some real data is also given.

2.
Adv Differ Equ ; 2020(1): 323, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32834812

RESUMO

In this research work, we present a mathematical model for novel coronavirus-19 infectious disease which consists of three different compartments: susceptible, infected, and recovered under convex incident rate involving immigration rate. We first derive the formulation of the model. Also, we give some qualitative aspects for the model including existence of equilibriums and its stability results by using various tools of nonlinear analysis. Then, by means of the nonstandard finite difference scheme (NSFD), we simulate the results for the data of Wuhan city against two different sets of values of immigration parameter. By means of simulation, we show how protection, exposure, death, and cure rates affect the susceptible, infected, and recovered population with the passage of time involving immigration. On the basis of simulation, we observe the dynamical behavior due to immigration of susceptible and infected classes or one of these two.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA