Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(5)2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35269980

RESUMO

Heat stress (HS) is one of the major abiotic stresses affecting the production and quality of wheat. Rising temperatures are particularly threatening to wheat production. A detailed overview of morpho-physio-biochemical responses of wheat to HS is critical to identify various tolerance mechanisms and their use in identifying strategies to safeguard wheat production under changing climates. The development of thermotolerant wheat cultivars using conventional or molecular breeding and transgenic approaches is promising. Over the last decade, different omics approaches have revolutionized the way plant breeders and biotechnologists investigate underlying stress tolerance mechanisms and cellular homeostasis. Therefore, developing genomics, transcriptomics, proteomics, and metabolomics data sets and a deeper understanding of HS tolerance mechanisms of different wheat cultivars are needed. The most reliable method to improve plant resilience to HS must include agronomic management strategies, such as the adoption of climate-smart cultivation practices and use of osmoprotectants and cultured soil microbes. However, looking at the complex nature of HS, the adoption of a holistic approach integrating outcomes of breeding, physiological, agronomical, and biotechnological options is required. Our review aims to provide insights concerning morpho-physiological and molecular impacts, tolerance mechanisms, and adaptation strategies of HS in wheat. This review will help scientific communities in the identification, development, and promotion of thermotolerant wheat cultivars and management strategies to minimize negative impacts of HS.


Assuntos
Melhoramento Vegetal , Triticum , Aclimatação , Adaptação Fisiológica , Resposta ao Choque Térmico
2.
Front Plant Sci ; 8: 1215, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28751902

RESUMO

A novel Salicornia brachiata Salt Inducible (SbSI-1) gene was isolated and overexpressed in tobacco for in planta functional validation subjected to drought and salt stress. SbSI-1 is a nuclear protein. The transgenic tobacco overexpressing SbSI-1 gene exhibited better seed germination, growth performances, pigment contents, cell viability, starch accumulation, and tolerance index under drought and salt stress. Overexpression of SbSI-1 gene alleviated the build-up of reactive oxygen species (ROS) and curtailed the ROS-induced oxidative damages thus improved the physiological health of transgenic tobacco under stressed conditions. The higher activities of antioxidant enzymes, lower accumulation of ROS, higher membrane stability, relative water content, and polyphenol contents indicated the better survival of the transgenic tobacco than wild-type (WT) tobacco under stressed conditions. Transgenic tobacco had a higher net photosynthetic rate, PSII operating efficiency, and performance index under drought and salt stress. Higher accumulation of compatible solutes and K+/Na+ ratio in transgenic tobacco than WT showed the better osmotic and redox homeostasis under stressed conditions. The up-regulation of genes encoding antioxidant enzymes (NtSOD, NtAPX, and NtCAT) and transcription factors (NtDREB2 and NtAP2) in transgenic tobacco under stressed conditions showed the role of SbSI-1 in ROS alleviation and involvement of this gene in abiotic stress tolerance. Multivariate data analysis exhibited statistical distinction among growth responses, physiological health, osmotic adjustment, and photosynthetic responses of WT and transgenic tobacco under stressed conditions. The overexpression of SbSI-1 gene curtailed the ROS-induced oxidative damages and maintained the osmotic homeostasis under stress conditions thus improved physiological health and photosynthetic efficiencies of the transgenic tobacco overexpressing SbSI-1 gene.

3.
Front Plant Sci ; 8: 582, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28473839

RESUMO

An obligate halophyte, Salicornia brachiata grows in salt marshes and is considered to be a potential resource of salt- and drought-responsive genes. It is important to develop an understanding of the mechanisms behind enhanced salt tolerance. To increase this understanding, a novel SbSRP gene was cloned, characterized, over-expressed, and functionally validated in the model plant Nicotiana tabacum. The genome of the halophyte S. brachiata contains two homologs of an intronless SbSRP gene of 1,262 bp in length that encodes for a stress-related protein. An in vivo localization study confirmed that SbSRP is localized on the plasma membrane. Transgenic tobacco plants (T1) that constitutively over-express the SbSRP gene showed improved salinity and osmotic stress tolerance. In comparison to Wild Type (WT) and Vector Control (VC) plants, transgenic lines showed elevated relative water and chlorophyll content, lower malondialdehyde content, lower electrolyte leakage and higher accumulation of proline, free amino acids, sugars, polyphenols, and starch under abiotic stress treatments. Furthermore, a lower build-up of H2O2 content and superoxide-radicals was found in transgenic lines compared to WT and VC plants under stress conditions. Transcript expression of Nt-APX (ascorbate peroxidase), Nt-CAT (catalase), Nt-SOD (superoxide dismutase), Nt-DREB (dehydration responsive element binding factor), and Nt-AP2 (apetala2) genes was higher in transgenic lines under stress compared to WT and VC plants. The results suggested that overexpression of membrane-localized SbSRP mitigates salt and osmotic stress in the transgenic tobacco plant. It was hypothesized that SbSRP can be a transporter protein to transmit the environmental stimuli downward through the plasma membrane. However, a detailed study is required to ascertain its exact role in the abiotic stress tolerance mechanism. Overall, SbSRP is a potential candidate to be used for engineering salt and osmotic tolerance in crops.

4.
Front Plant Sci ; 7: 518, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27148338

RESUMO

The universal stress protein (USP) is a ubiquitous protein and plays an indispensable role in plant abiotic stress tolerance. The genome of Salicornia brachiata contains two homologs of intron less SbUSP gene which encodes for salt and osmotic responsive USP. In vivo localization reveals that SbUSP is a membrane bound cytosolic protein. The role of the gene was functionally validated by developing transgenic tobacco and compared with control [wild-type (WT) and vector control (VC)] plants under different abiotic stress condition. Transgenic lines (T1) exhibited higher chlorophyll, relative water, proline, total sugar, reducing sugar, free amino acids, polyphenol contents, osmotic potential, membrane stability, and lower electrolyte leakage and lipid peroxidation (malondialdehyde content) under stress treatments than control (WT and VC) plants. Lower accumulation of H2O2 and [Formula: see text] radicals was also detected in transgenic lines compared to control plants under stress conditions. Present study confers that overexpression of the SbUSP gene enhances plant growth, alleviates ROS buildup, maintains ion homeostasis and improves the physiological status of the plant under salt and osmotic stresses. Principal component analysis exhibited a statistical distinction of plant response to salinity stress, and a significant response was observed for transgenic lines under stress, which provides stress endurance to the plant. A possible signaling role is proposed that some downstream genes may get activated by abiotic stress responsive cytosolic SbUSP, which leads to the protection of cell from oxidative damages. The study unveils that ectopic expression of the gene mitigates salt or osmotic stress by scavenging ROS and modulating the physiological process of the plant.

5.
Gene ; 536(1): 163-70, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24291028

RESUMO

Salicornia brachiata is an extreme halophyte considered to be a rich source of stress responsive genes and an EST database revealed that 30% of its genes are uncharacterized. In order to ascertain its function, a gene (Sal-E-56) of unknown function was made full length using RACE, cloned and characterized. The full length gene (873 bp; accession no. KF164282) contained an open reading frame (ORF) of 486 bp encoding for a protein that belongs to the universal stress protein (USP) family that was named SbUSP. The SbUSP interacted with adenosine monophosphate and exhibited characteristic motifs, phosphorylation, glycosylation and ATP binding sites. Further, in-silico analyses suggested a probable role in metabolic process of phosphate-containing compounds including signal transduction. In planta transcript profiling exhibited a significant expression response (7.8-fold) to salt stress, additionally abundant of SbUSP transcripts were observed during drought, heat and cold stress, reaching a maximum increase of 3.66-, 2.64- and 2.14-fold, respectively, at 12 or 24h. The heterologous expression of this gene in Escherichia coli provided enhanced stress tolerance and recombinant cells have higher growth rate compared to vector alone and showed growth at up to a 10(-5) dilution in the spot assay. It was predicted that SbUSP may be directly involved in tolerance mechanisms or function as a molecular switch (signaling molecule) to activate the stress adaptive mechanisms. However, further investigation will be required to determine its role as a molecular switch and mode of action during stress.


Assuntos
Chenopodiaceae/genética , Escherichia coli/genética , Proteínas de Choque Térmico/genética , Osmorregulação/genética , Tolerância ao Sal/genética , Plantas Tolerantes a Sal/genética , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Regulação Bacteriana da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteínas de Choque Térmico/isolamento & purificação , Dados de Sequência Molecular , Organismos Geneticamente Modificados , Transdução Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...