Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 52(48): 18302-18314, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37997778

RESUMO

A analogous series of 2-(3,5-dimethylpyrazol-1-yl)phenyl substituted selenoether complexes of palladium [PdCl2(RSeC6H4dmpz)]; (R = CH2COOH (1), CH2CH2COOH (2), and CH2CH2OH (3); dmpz = dimethylpyrazole) were ably synthesized in a facile manner and exhaustively characterized. Insight into molecular structures of these complexes was keenly probed through single crystal X-ray diffraction (XRD) analysis, unfolding the structural scaffolds and laying into molecular aggregation, availed through hydrogen bonding interactions borne out of tethered protic groups. The complexes were converted to capping free palladium selenide (Pd17Se15) nanoparticles through pyrolysis and evaluated for their electrocatalytic efficacy towards the hydrogen evolution reaction (HER), the oxygen evolution reaction (OER) and methanol oxidation reaction (MOR) in alkaline medium. In an alkaline medium, PSNP1 (Pd17Se15) obtained from the hydrogen bonded aggregate of complex PdCl2L1 (1) produced good HER activity. PSNP1 had a little decrease in current density after 300 continuous cycles, which proves that the catalyst presents high stability in the recycling process. For the electrocatalytic oxidation of CH3OH, the electrocatalytic rate constant (k) obtained was 0.3 × 103 cm3 mol-1 s-1.

2.
Biosensors (Basel) ; 11(6)2021 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-34205292

RESUMO

Consumption of cranberries is associated with the putative effects of preventing urinary tract infections (UTIs). Cranberry proanthocyanidins (PAC) contain unusual double A-type linkages, which are associated with strong interactions with surface virulence factors found on UTI-causing bacteria such as extra-intestinal pathogenic Escherichia coli (ExPEC), depicting in bacterial agglutination processes. In this work, we demonstrated the efficacy of cranberry PAC (200 µg/mL) to agglutinate ExPEC (5.0 × 108 CFU/mL) in vitro as a selective interaction for the design of functionalized biosensors for potential detection of UTIs. We fabricated functionalized screen-printed electrodes (SPEs) by modifying with PAC-polyaniline (PANI) nanocomposites and tested the effectiveness of the PAC-PANI/SPE biosensor for detecting the presence of ExPEC in aqueous suspensions. Results indicated that the PAC-PANI/SPE was highly sensitive (limit of quantification of 1 CFU/mL of ExPEC), and its response was linear over the concentration range of 1-70,000 CFU/mL, suggesting cranberry PAC-functionalized biosensors are an innovative alternative for the detection and diagnosis of ExPEC-associated UTIs. The biosensor was also highly selective, reproducible, and stable.


Assuntos
Bactérias , Nanocompostos/análise , Proantocianidinas/análise , Infecções Urinárias , Compostos de Anilina , Escherichia coli , Frutas , Humanos , Extratos Vegetais , Infecções Urinárias/microbiologia , Vaccinium macrocarpon
3.
RSC Adv ; 10(34): 20211-20221, 2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35520415

RESUMO

Monodispersed colloidal gold nanoparticles (AuNPs) were synthesized by an easy, cost-effective, and eco-friendly method. The AuNPs were mostly quasi-hexagonal in shape with sizes ranging from 15 to 18 nm. A screen-printed electrode modified with AuNPs (AuNPs/SPE) was used as an electrochemical sensor for the detection of As(iii) in water samples. The mechanistic details for the detection of As(iii) were investigated and an electrochemical reaction mechanism was proposed. Under the optimal experimental conditions, the sensor was highly sensitive to As(iii), with a limit of detection of 0.11 µg L-1 (1.51 nM), which is well below the regulatory limit of 10 µg L-1 established by the United States Environmental Protection Agency and the World Health Organization. The sensor responses were highly stable, reproducible, and linear over the As(iii) concentration range of 0.075 to 30 µg L-1. The presence of co-existing heavy metal cations such as lead, copper, and mercury did not interfere with the sensor response to As(iii). Furthermore, the voltammogram peaks for As(iii), lead, copper, and mercury were sufficiently separate for their potential simultaneous measurement, and at very harsh acidic pH it may be possible to detect As(v). The AuNPs/SPE could detect As(iii) in tap water samples at near-neutral pH, presenting potential possibilities for real-time, practical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...