Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Expo Health ; 16(1): 87-99, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38313597

RESUMO

In Bangladesh most agronomic biomass (straw, husk, dried dung) is burnt for domestic cooking use. Consequently, the soil is continuously stripped of mineral nutrients and carbon (C) substrate. Here we investigate if recycling of household ash (ash) as fertilizer can sustainably improve soil fertility as well as minimise accumulation of toxic elements (As, Cd) in rice grain. Large scale field trials across two geographic regions (Barind, Madhupur) and two seasons (wet, dry) and with application of 3 fertiliser treatments (NPKS, ash, NPKS + ash) were conducted. At the end of each season, the impact of region*season*treatment on soil microbial comunities, rice yield, and grain quality (As, Cd, nutrient elements) was assessed. When compared to conventional field application rates of NPKS (control), application of ash boosted rice yield by circa. 20% in both regions during wet and dry season, with no effect on rice grain carcinogenic inorganic arsenic (iAs), dimethylarsonic acid (DMA) or cadmium (Cd), but with potential to increase zinc (Zn). For soil microbial communities, a significant region and season effect as well as correlation with elements in rice grain was observed, amongst these Cd, Zn, iAs and DMA. This study illustrates that application of ash can reduce the requirement for expensive chemical fertiliser, whilst at the same time increasing rice yield and maintaining grain quality, making farming in Bangladesh more sustainable and productive. The study also implies that the combined impact of region, season, and soil microbes determines accumulation of elements in rice grain. Supplementary Information: The online version contains supplementary material available at 10.1007/s12403-023-00539-y.

2.
Heliyon ; 8(12): e11631, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36471857

RESUMO

Country bean is a grain legume extensively farmed for its multi-purpose uses, yet the traits related to yield are are poorly studied and yet unexplored. A study on the diversity of qualitative and quantitative morphological characteristics concerning yield among the country bean germplasms collected from Bangladesh identified considerable variation in the studied traits across the germplasms and identified a complex correlation between the qualitative and quantitative traits. Principal Component Analysis (PCA) detected five components that contributed 66.38% qualitative traits and six components contributed 74.49% quantitative traits to total variations. Eigenvalues indicated that a majority of color-related qualitative traits included cotyledon, leaf, vein, seed, flower, and petals contributed, in contrast,a majority of the seed, leaf, flower, and inflorescence-related quantitative traits contributed to the total diversity of the Lablab germplasms. Among the quantitative traits, the highest coefficient of variation (CV%) was found in average pod weight (50.98%), followed by the total number of spikes per plant (43.82%), while seed length, pod weight, length, width, thickness, number of flower/spike, spike length, and total no of spikes/plant all had more than 20.00 percent CV, suggesting suitability to use in the breeding of high yielding genotypes. The germplasms are grouped into four and three clusters based on quantitative and qualitative traits, suggesting quantitative characters offer better clustering of genotypes. Considering the above traits, our research found that the BD-10804, BD-10807, BD-11091, BD-10808, BD-10815, and BD-11089 and cultivar Goal Goda Lablab beans germplasms produced higher pod weight with corresponding higher pod length, width, and thickness suggesting to use them as high yielding genotypes for food and fodder purposes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...