Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-468720

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for a global pandemic that has had significant impacts on human health and economies worldwide. SARS-CoV-2 is highly transmissible and the cause of coronavirus disease 2019 (COVID-19) in humans. A wide range of animal species have also been shown to be susceptible to SARS-CoV-2 infection by experimental and/or natural infections. Domestic and large cats, mink, ferrets, hamsters, deer mice, white-tailed deer, and non-human primates have been shown to be highly susceptible, whereas other species such as mice, dogs, pigs, and cattle appear to be refractory to infection or have very limited susceptibility. Sheep (Ovis aries) are a commonly farmed domestic ruminant that have not previously been thoroughly investigated for their susceptibility to SARS-CoV-2. Therefore, we performed in vitro and in vivo studies which consisted of infection of ruminant-derived cell cultures and experimental challenge of sheep to investigate their susceptibility to SARS-CoV-2. Our results showed that sheep-derived cell cultures support SARS-CoV-2 replication. Furthermore, experimental challenge of sheep demonstrated limited infection with viral RNA shed in nasal and oral swabs primarily at 1-day post challenge (DPC), and also detected in the respiratory tract and lymphoid tissues at 4 and 8 DPC. Sero-reactivity was also observed in some of the principal infected sheep but not the contact sentinels, indicating that transmission to co-mingled naive sheep was not highly efficient; however, viral RNA was detected in some of the respiratory tract tissues of sentinel animals at 21 DPC. Furthermore, we used challenge inoculum consisting of a mixture of two SARS-CoV-2 isolates, representatives of the ancestral lineage A and the B.1.1.7-like alpha variant of concern (VOC), to study competition of the two virus strains. Our results indicate that sheep show low susceptibility to SARS-CoV-2 infection, and that the alpha VOC outcompeted the ancestral lineage A strain.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-427182

RESUMO

SARS-CoV-2 is the causative agent of COVID-19 and responsible for the current global pandemic. We and others have previously demonstrated that cats are susceptible to SARS-CoV-2 infection and can efficiently transmit the virus to naive cats. Here, we address whether cats previously exposed to SARS-CoV-2 can be re-infected with SARS-CoV-2. In two independent studies, SARS-CoV-2-infected cats were re-challenged with SARS-CoV-2 at 21 days post primary challenge (DPC) and necropsies performed at 4, 7 and 14 days post-secondary challenge (DP2C). Sentinels were co-mingled with the re-challenged cats at 1 DP2C. Clinical signs were recorded, and nasal, oropharyngeal, and rectal swabs, blood, and serum were collected and tissues examined for histologic lesions. Viral RNA was transiently shed via the nasal, oropharyngeal and rectal cavities of the re-challenged cats. Viral RNA was detected in various tissues of re-challenged cats euthanized at 4 DP2C, mainly in the upper respiratory tract and lymphoid tissues, but less frequently and at lower levels in the lower respiratory tract when compared to primary SARS-CoV-2 challenged cats at 4 DPC. Histologic lesions that characterized primary SARS-CoV-2 infected cats at 4 DPC were absent in the re-challenged cats. Naive sentinels co-housed with the re-challenged cats did not shed virus or seroconvert. Together, our results indicate that cats previously infected with SARS-CoV-2 can be experimentally re-infected with SARS-CoV-2; however, the levels of virus shed was insufficient for transmission to co-housed naive sentinels. We conclude that SARS-CoV-2 infection in cats induces immune responses that provide partial, non-sterilizing immune protection against reinfection.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-235002

RESUMO

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the cause of Coronavirus Disease 2019 (COVID-19) and responsible for the current pandemic. Recent SARS-CoV-2 susceptibility and transmission studies in cats show that the virus can replicate in these companion animals and transmit to other cats. Here, we present an in-depth study of SARS-CoV-2 infection, associated disease and transmission dynamics in domestic cats. Six 4- to 5-month-old cats were challenged with SARS-CoV-2 via intranasal and oral routes simultaneously. One day post challenge (DPC), two sentinel contact cats were co-mingled with the principal infected animals. Animals were monitored for clinical signs, clinicopathological abnormalities and viral shedding throughout the 21 DPC observation period. Postmortem examinations were performed at 4, 7 and 21 DPC to investigate disease progression. Viral RNA was not detected in blood but transiently in nasal, oropharyngeal and rectal swabs and bronchoalveolar lavage fluid as well as various tissues. Tracheobronchoadenitis of submucosal glands with the presence of viral RNA and antigen was observed in airways of the infected cats on 4 and 7 DPC. Serology showed that both, principal and sentinel cats, developed SARS-CoV-2-specific and neutralizing antibodies to SARS-CoV-2 detectable at 7 DPC or 10 DPC, respectively. All animals were clinically asymptomatic during the course of the study and capable of transmitting SARS-CoV-2 to sentinels within 2 days of comingling. The results of this study are critical for our understanding of the clinical course of SARS-CoV-2 in a naturally susceptible host species, and for risk assessment of the maintenance of SARS-CoV-2 in felines and transmission to other animals and humans.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...