Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4610, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816417

RESUMO

NLR family proteins act as intracellular receptors. Gene duplication amplifies the number of NLR genes, and subsequent mutations occasionally provide modifications to the second gene that benefits immunity. However, evolutionary processes after gene duplication and functional relationships between duplicated NLRs remain largely unclear. Here, we report that the rice NLR protein Pit1 is associated with its paralogue Pit2. The two are required for the resistance to rice blast fungus but have different functions: Pit1 induces cell death, while Pit2 competitively suppresses Pit1-mediated cell death. During evolution, the suppression of Pit1 by Pit2 was probably generated through positive selection on two fate-determining residues in the NB-ARC domain of Pit2, which account for functional differences between Pit1 and Pit2. Consequently, Pit2 lost its plasma membrane localization but acquired a new function to interfere with Pit1 in the cytosol. These findings illuminate the evolutionary trajectory of tandemly duplicated NLR genes after gene duplication.


Assuntos
Duplicação Gênica , Proteínas NLR , Oryza , Proteínas de Plantas , Proteínas NLR/genética , Proteínas NLR/metabolismo , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Evolução Molecular , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Resistência à Doença/genética , Morte Celular , Filogenia , Regulação da Expressão Gênica de Plantas
2.
Rev Sci Instrum ; 90(9): 093102, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31575223

RESUMO

We have developed an acceptance-cone-tunable (ACT) electron spectrometer for the highly efficient constant-energy photoelectron mapping of functional materials. The ACT spectrometer consists of the hemispherical deflection analyzer with the mesh-type electrostatic lens near the sample. The photoelectron trajectory can be converged by applying a negative bias to the sample and grounding the mesh lens and the analyzer entrance. The performance of the present ACT spectrometer with neither rotating nor tilting of the sample is demonstrated by the wide-angle observation of the well-known π-band dispersion of a single crystalline graphite over the Brillouin zone. The acceptance cone of the spectrometer is expanded by a factor of 3.30 when the negative bias voltage is 10 times as high as the kinetic energy of photoelectrons.

3.
J Phys Chem Lett ; 10(6): 1312-1318, 2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30768901

RESUMO

Strong intermolecular electronic coupling and well-ordered molecular arrangements enable efficient transport of both charge carriers and excitons in semiconducting π-conjugated molecular solids. Thus, molecular heteroepitaxy to form crystallized donor-acceptor molecular interfaces potentially leads to a novel strategy for creating efficient organic optoelectronic devices via the concomitance of these two requirements. In the present study, the crystallographic and electronic structures of a heteroepitaxial molecular interface, perfluoropentacene (PFP, C22F14) grown on pentacene single crystals (Pn-SCs, C22H14), were determined by means of grazing-incidence X-ray diffraction (GIXD) and angle-resolved ultraviolet photoelectron spectroscopy (ARUPS), respectively. GIXD revealed that PFP uniquely aligned its primary axis along the [11̅0] axis of crystalline pentacene to form well-crystallized overlayers. Valence band dispersion (at least 0.49 eV wide) was successfully resolved by ARUPS. This indicated a significant transfer integral between the frontier molecular orbitals of the nearest-neighbor PFP molecules.

4.
Phys Chem Chem Phys ; 20(25): 17415-17422, 2018 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-29911243

RESUMO

Spectroscopic and nanoscale imaging investigations concerning the spatial extent of molecular orbitals at organic/substrate interfaces have been of intense interest to understand charge dynamics. Here, the spatial extent of unoccupied molecular orbitals of ultrathin rubrene [5,6,11,12-tetraphenyltetracene] films has been investigated with scanning tunneling microscopy and spectroscopy. Based on constant-current distance (z)-voltage (V) measurements, the unoccupied energy levels are elucidated and found to be consistent with previously reported macroscopic two-photon photoemission (2PPE) spectroscopy. In the diffuse unoccupied molecular orbitals reported with 2PPE (J. Phys. Chem. C, 2013, 117, 20098), nanoscale dz/dV spatial maps reveal that the local density of states of the orbitals extends over the rubrene molecules. Delocalization is also observed for the image potential states, which are inherently free-electron-like. This is in contrast to the localized nature of other unoccupied molecular orbitals. A nanoscale understanding of diffuse and delocalized molecular orbitals provides a fundamental insight into low-lying Rydberg states in polycyclic aromatic hydrocarbons.

5.
J Phys Chem Lett ; 9(9): 2285-2292, 2018 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-29664638

RESUMO

The structural and photophysical properties of tetradentate Pt(ppzOppz), Pt(ppzOpopy), Pt(ppzOczpy), and Pt(czpyOczpy) have been experimentally and theoretically explored. Single-crystal diffraction measurements provided accurate structural information. Electrochemical and photophysical characterizations revealed internal electronic energy levels in ground and excited states. (Time-dependent) Density functional theory calculation revealed electron distributions in transition processes of S0 → S1 and S1 → T1 → S0. Electronic transition study indicated that Pt(ppzOppz) demonstrated mixed MLCT/LC states and Pt(czpyOczpy) showed MLCT-dominated states in S1 and T1. Both Pt(ppzOpopy) and Pt(ppzOczpy) presented strong delocalized spin transition (DST) during intersystem crossing. Upon frame modification of Pt(ppzOczpy), we found that their S1 and T1 can be independently manipulated. These blue emitters showed a tunable and narrow emission band (the narrowest fwhm was 19 nm) with luminescence efficiency as high as 86%. The findings of the DST transition mode in the neutral Pt(II) complexes provide guidance for rational design of novel phosphorescent materials.

6.
Langmuir ; 32(8): 1981-7, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26844381

RESUMO

Tetraphenyldibenzoperiflanthene (DBP) is a promising candidate as a component of highly efficient organic photovoltaic cells and organic light-emitting diodes. The structural properties of thin films of this particular lander-type molecule on Ag(111) were investigated by complementary techniques. Highly ordered structures were obtained, and their mutual alignment was characterized by means of low-energy electron diffraction (LEED). Scanning tunneling microscopy (STM) images reveal two slightly different arrangements within the first monolayer (ML), both describable as specific herringbone patterns with two molecules per unit cell whose dibenzoperiflanthene framework is parallel to the surface. In contrast, single DBP molecules in the second ML were imaged with much higher intramolecular resolution, resembling the shape of the frontier orbitals in the gas phase as calculated by means of density functional theory (DFT). Further deposition leads to the growth of highly ordered bilayer islands on top of the first ML with identical unit cell dimensions and orientation but slightly inclined molecules. This suggests that the first ML acts as a template for the epitaxial growth of further layers. Simultaneously, a significant number of second-layer molecules mainly located at step edges or scattered over narrow terraces do not form highly ordered aggregates.

7.
J Chem Phys ; 145(21): 214703, 2016 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-28799400

RESUMO

Time resolved two-photon photoemission (TR-2PPE) spectroscopy has been performed for rubrene films on highly oriented pyrolytic graphite. When a second layer is formed on the first monolayer (ML), 2PPE intensity from the lowest unoccupied molecular orbital (LUMO)-derived level shows a clear resonance at a pump photon energy of 4.1 eV. In contrast, the resonance is very weak for sub-ML films. Substrate-molecule interaction blurs the intramolecular resonant transition for sub-ML films. The lifetime of electrons in the LUMO-derived level increases exponentially with increasing film thickness, for thickness up to 3 ML. The lifetime increase becomes more moderate for further increase in the film thickness. This change in the slope of the increase in lifetime suggests a transition in the relaxation mechanism, from electron tunneling to intramolecular relaxation medicated by the substrate. When ultraviolet photons of 4.45 eV are used to pump electrons to the LUMO-derived level, the decay profiles for films thicker than 1 ML deviate from a simple exponential decay. Such deviation is not significantly observed for sub-ML films. When visible photons of 2.97 eV are used for pumping, the decay profiles are well reproduced by a simple exponential decay, irrespective of the film thickness. The deviation from simple exponential decay is attributed to the relaxation of holes produced at deep occupied levels to the highest occupied molecular orbital-derived level.

8.
Langmuir ; 30(47): 14163-70, 2014 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-25361739

RESUMO

Naphthalene, C10H8, is a polycyclic aromatic hydrocarbon (PAH) consisting of two fused benzene rings. From previous studies, it is known to form three different commensurate structures in thin epitaxial films on Cu(111), depending on the preparation conditions. One of these structures even exhibits a chiral motif of molecular rotations within the unit cell. In an attempt to elucidate this polymorphism, we performed in situ low-energy electron diffraction (LEED) as a function of temperature and surface coverage, revealing an unexpected and extraordinarily complex structural and thermodynamic behavior. We present experimental evidence for a phase transition from a two-dimensional gas to a highly ordered molecular solid via an intermediate metastable phase with moderate order (extending over a few lattice constants only) which undergoes a reversible orientational shift upon temperature variation. At monolayer coverage and above, we find that two different point-on-line (POL) coincident epitaxial relations constitute the dominant structures. This is remarkable because, so far, POL structures of naphthalene on Cu(111) and other substrates have either not been recognized or not obtained under the respective experimental conditions. Our results are corroborated by the analysis of characteristic moiré patterns observed in scanning tunneling microscopy (STM), indicative of a noncommensurate epitaxial registry.

9.
PLoS One ; 7(6): e39269, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22723981

RESUMO

Myosin light chain (MLC) phosphorylation plays important roles in various cellular functions such as cellular morphogenesis, motility, and smooth muscle contraction. MLC phosphorylation is determined by the balance between activities of Rho-associated kinase (Rho-kinase) and myosin phosphatase. An impaired balance between Rho-kinase and myosin phosphatase activities induces the abnormal sustained phosphorylation of MLC, which contributes to the pathogenesis of certain vascular diseases, such as vasospasm and hypertension. However, the dynamic principle of the system underlying the regulation of MLC phosphorylation remains to be clarified. Here, to elucidate this dynamic principle whereby Rho-kinase regulates MLC phosphorylation, we developed a mathematical model based on the behavior of thrombin-dependent MLC phosphorylation, which is regulated by the Rho-kinase signaling network. Through analyzing our mathematical model, we predict that MLC phosphorylation and myosin phosphatase activity exhibit bistability, and that a novel signaling pathway leading to the auto-activation of myosin phosphatase is required for the regulatory system of MLC phosphorylation. In addition, on the basis of experimental data, we propose that the auto-activation pathway of myosin phosphatase occurs in vivo. These results indicate that bistability of myosin phosphatase activity is responsible for the bistability of MLC phosphorylation, and the sustained phosphorylation of MLC is attributed to this feature of bistability.


Assuntos
Cadeias Leves de Miosina/metabolismo , Quinases Associadas a rho/metabolismo , Algoritmos , Linhagem Celular , Simulação por Computador , Ativação Enzimática , Humanos , Modelos Biológicos , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Fosforilação , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...