Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1592, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383472

RESUMO

Magnetic kagome metals are a promising platform to develop unique quantum transport and optical phenomena caused by the interplay between topological electronic bands, strong correlations, and magnetic order. This interplay may result in exotic quasiparticles that describe the coupled electronic and spin excitations on the frustrated kagome lattice. Here, we observe novel elementary magnetic excitations within the ferromagnetic Mn kagome layers in TbMn6Sn6 using inelastic neutron scattering. We observe sharp, collective acoustic magnons and identify flat-band magnons that are localized to a hexagonal plaquette due to the special geometry of the kagome layer. Surprisingly, we observe another type of elementary magnetic excitation; a chiral magnetic quasiparticle that is also localized on a hexagonal plaquette. The short lifetime of localized flat-band and chiral quasiparticles suggest that they are hybrid excitations that decay into electronic states.

2.
Nat Commun ; 14(1): 2658, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37160929

RESUMO

Ferromagnetic (FM) order in a two-dimensional kagome layer is predicted to generate a topological Chern insulator without an applied magnetic field. The Chern gap is largest when spin moments point perpendicular to the kagome layer, enabling the capability to switch topological transport properties, such as the quantum anomalous Hall effect, by controlling the spin orientation. In TbMn6Sn6, the uniaxial magnetic anisotropy of the Tb3+ ion is effective at generating the Chern state within the FM Mn kagome layers while a spin-reorientation (SR) transition to easy-plane order above TSR = 310 K provides a mechanism for switching. Here, we use inelastic neutron scattering to provide key insights into the fundamental nature of the SR transition. The observation of two Tb excitations, which are split by the magnetic anisotropy energy, indicates an effective two-state orbital character for the Tb ion, with a uniaxial ground state and an isotropic excited state. The simultaneous observation of both modes below TSR confirms that orbital fluctuations are slow on magnetic and electronic time scales < ps and act as a spatially-random orbital alloy. A thermally-driven critical concentration of isotropic Tb ions triggers the SR transition.

3.
Nat Commun ; 12(1): 999, 2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33579928

RESUMO

Knowledge of magnetic symmetry is vital for exploiting nontrivial surface states of magnetic topological materials. EuIn2As2 is an excellent example, as it is predicted to have collinear antiferromagnetic order where the magnetic moment direction determines either a topological-crystalline-insulator phase supporting axion electrodynamics or a higher-order-topological-insulator phase with chiral hinge states. Here, we use neutron diffraction, symmetry analysis, and density functional theory results to demonstrate that EuIn2As2 actually exhibits low-symmetry helical antiferromagnetic order which makes it a stoichiometric magnetic topological-crystalline axion insulator protected by the combination of a 180∘ rotation and time-reversal symmetries: [Formula: see text]. Surfaces protected by [Formula: see text] are expected to have an exotic gapless Dirac cone which is unpinned to specific crystal momenta. All other surfaces have gapped Dirac cones and exhibit half-integer quantum anomalous Hall conductivity. We predict that the direction of a modest applied magnetic field of µ0H ≈ 1 to 2 T can tune between gapless and gapped surface states.

4.
Phys Rev Lett ; 119(14): 147201, 2017 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-29053286

RESUMO

Inelastic neutron scattering measurements on the itinerant antiferromagnet CaCo_{2-y}As_{2} at a temperature of 8 K reveal two orthogonal planes of scattering perpendicular to the Co square lattice in reciprocal space, demonstrating the presence of effective one-dimensional spin interactions. These results are shown to arise from near-perfect bond frustration within the J_{1}-J_{2} Heisenberg model on a square lattice with ferromagnetic J_{1} and hence indicate that the extensive previous experimental and theoretical study of the J_{1}-J_{2} Heisenberg model on local-moment square spin lattices should be expanded to include itinerant spin systems.

5.
Nat Commun ; 7: 12728, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27582003

RESUMO

A hallmark of the iron-based superconductors is the strong coupling between magnetic, structural and electronic degrees of freedom. However, a universal picture of the normal state properties of these compounds has been confounded by recent investigations of FeSe where the nematic (structural) and magnetic transitions appear to be decoupled. Here, using synchrotron-based high-energy x-ray diffraction and time-domain Mössbauer spectroscopy, we show that nematicity and magnetism in FeSe under applied pressure are indeed strongly coupled. Distinct structural and magnetic transitions are observed for pressures between 1.0 and 1.7 GPa and merge into a single first-order transition for pressures ≳1.7 GPa, reminiscent of what has been found for the evolution of these transitions in the prototypical system Ba(Fe1-xCox)2As2. Our results are consistent with a spin-driven mechanism for nematic order in FeSe and provide an important step towards a universal description of the normal state properties of the iron-based superconductors.

6.
Phys Rev Lett ; 114(21): 217001, 2015 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-26066451

RESUMO

X-ray magnetic circular dichroism (XMCD) measurements on single-crystal and powder samples of Ba_{0.6}K_{0.4}Mn_{2}As_{2} show that the ferromagnetism below T_{C}≈100 K arises in the As 4p conduction band. No XMCD signal is observed at the Mn x-ray absorption edges. Below T_{C}, however, a clear XMCD signal is found at the As K edge which increases with decreasing temperature. The XMCD signal is absent in data taken with the beam directed parallel to the crystallographic c axis indicating that the orbital magnetic moment lies in the basal plane of the tetragonal lattice. These results show that the previously reported itinerant ferromagnetism is associated with the As 4p conduction band and that distinct local-moment antiferromagnetism and itinerant ferromagnetism with perpendicular easy axes coexist in this compound at low temperature.

7.
Phys Rev Lett ; 111(4): 047001, 2013 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-23931395

RESUMO

Magnetization, nuclear magnetic resonance, high-resolution x-ray diffraction, and magnetic field-dependent neutron diffraction measurements reveal a novel magnetic ground state of Ba0.60K0.40Mn2As2 in which itinerant ferromagnetism (FM) below a Curie temperature TC≈100 K arising from the doped conduction holes coexists with collinear antiferromagnetism (AFM) of the Mn local moments that order below a Néel temperature TN=480 K. The FM ordered moments are aligned in the tetragonal ab plane and are orthogonal to the AFM ordered Mn moments that are aligned along the c axis. The magnitude and nature of the low-T FM ordered moment correspond to complete polarization of the doped-hole spins (half-metallic itinerant FM) as deduced from magnetization and ab-plane electrical resistivity measurements.

8.
Nat Commun ; 3: 1067, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22990863

RESUMO

A current of electrons traversing a landscape of localized spins possessing non-coplanar magnetic order gains a geometrical (Berry) phase, which can lead to a Hall voltage independent of the spin-orbit coupling within the material-a geometrical Hall effect. Here we show that the highly correlated metal UCu(5) possesses an unusually large controllable geometrical Hall effect at T<1.2 K due to its frustration-induced magnetic order. The magnitude of the Hall response exceeds 20% of the ν=1 quantum Hall effect per atomic layer, which translates into an effective magnetic field of several hundred Tesla acting on the electrons. The existence of such a large geometric Hall response in UCu(5) opens a new field of enquiry into the importance of the role of frustration in highly correlated electron materials.

9.
Artigo em Inglês | MEDLINE | ID: mdl-26900514

RESUMO

The new thermal triple-axis spectrometer at the NIST Center for Neutron Research (NCNR) is located at the BT-7 beam port. The 165 mm diameter reactor beam is equipped with a selection of Söller collimators, beam-limiters, and a pyrolytic graphite (PG) filter to tailor the beam for the dual 20×20 cm(2) double-focusing monochromator system that provides monochromatic fluxes exceeding 10(8) n/cm(2)/s onto the sample. The two monochromators installed are PG(002) and Cu(220), which provide incident energies from 5 meV to above 500 meV. The computer controlled analyzer system offers six standard modes of operation, including a diffraction detector, a position-sensitive detector (PSD) in diffraction mode, horizontal energy focusing analyzer with detector, a Q-E mode employing a flat analyzer and PSD, a constant-E mode with the analyzer crystal system and PSD, and a conventional mode with a selection of Söller collimators and detector. Additional configurations for specific measurement needs are also available. This paper discusses the capabilities and performance for this new state-of-the-art neutron spectrometer.

10.
Phys Rev Lett ; 104(14): 147204, 2010 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-20481958

RESUMO

We have performed polarized and unpolarized small angle neutron scattering experiments on single crystals of HoMnO(3) and have found that an increase in magnetic scattering at low momentum transfers begins upon cooling through temperatures close to the spin reorientation transition at T(SR) approximately 40 K. We attribute the increase to an uncompensated magnetization arising within antiferromagnetic domain walls. Polarized neutron scattering experiments performed while applying an electric field show that the field suppresses magnetic scattering below T approximately 50 K, indicating that the electric field affects the magnetization via the antiferromagnetic domain walls rather than through a change to the bulk magnetic order.

11.
Phys Rev Lett ; 99(13): 137203, 2007 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-17930629

RESUMO

Water ice and spin ice are important model systems in which theory can directly account for "zero-point" entropy associated with quenched configurational disorder. Spin ice differs from water ice in the important respect that its fundamental constituents, the spins of the magnetic ions, can be removed through replacement with nonmagnetic ions while keeping the lattice structure intact. In order to investigate the interplay of frustrated interactions and quenched disorder, we have performed systematic heat capacity measurements on spin ice materials which have been thus diluted up to 90%. Investigations of both Ho and Dy spin ices reveal that the zero-point entropy depends nonmonotonically on dilution and approaches the value of Rln2 in the limit of high dilution. The data are in good agreement with a generalization of Pauling's theory for the entropy of ice.

12.
Phys Rev Lett ; 97(16): 167203, 2006 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-17155430

RESUMO

We report magnetization, specific heat, muon spin rotation, and Na NMR measurements on the S=3/2 rhombohedrally stacked Heisenberg antiferromagnet NaCrO2. This compound appears to be a good candidate for the study of isotropic triangular Heisenberg antiferromagnets with very weak interlayer coupling. While specific heat and magnetization measurements indicate the onset of a transition in the range Tc approximately 40-50 K, both muon spin rotation and NMR reveal a fluctuating crossover regime extending well below Tc, with a peak of relaxation rate T1(-1) around T approximately 25 K. This novel finding is discussed within the context of excitations in the triangular Heisenberg antiferromagnets.

13.
Phys Rev Lett ; 96(2): 027216, 2006 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-16486637

RESUMO

We report measurements of the ac susceptibility of the cooperative paramagnet Tb2Ti2O7 in a strong magnetic field. Our data show the expected saturation maximum in chi(T) and also an unexpected frequency dependence of this peak at low frequencies (<1 Hz), suggesting very slow spin relaxations are occurring. Measurements on samples diluted with nonmagnetic Y3+ or Lu3+ and complementary measurements on pure and diluted Dy2Ti2O7 strongly suggest that the relaxation is associated with dipolar spin correlations, representing unusual cooperative behavior in a paramagnetic system.

14.
Phys Rev Lett ; 91(10): 107201, 2003 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-14525500

RESUMO

We have studied spin relaxation in the spin ice compound Dy2Ti2O7 through measurements of the ac magnetic susceptibility. While the characteristic spin-relaxation time (tau) is thermally activated at high temperatures, it becomes almost temperature independent below T(cross) approximately 13 K. This behavior, combined with nonmonotonic magnetic field dependence of tau, indicates that quantum tunneling dominates the relaxational process below that temperature. As the low-entropy spin ice state develops below T(ice) approximately 4 K, tau increases sharply with decreasing temperature, suggesting the emergence of a collective degree of freedom for which thermal relaxation processes again become important as the spins become strongly correlated.

15.
Proc Natl Acad Sci U S A ; 100(14): 8097-102, 2003 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-12824460

RESUMO

Magnetic ground states in solids often arise as a result of a delicate balance between competing factors. One currently active area of research in magnetic materials involves compounds in which long-range magnetic ordering at low temperatures is frustrated by the geometry of the crystalline lattice, a situation known as geometrical magnetic frustration. The number of systems known to display the effects of such frustration is growing, but those that are sufficiently simple from theoretical, chemical, and physical perspectives to allow for detailed understanding remain very few. A search for model compounds in this family has led us to the double perovskites Ba2LnSbO6 and Sr2LnSbO6 (Ln = Dy, Ho, and Gd) reported here. Ba2DySbO6,Ba2HoSbO6,Sr2DySbO6, and Sr2HoSbO6 are structurally characterized by powder neutron diffraction at ambient temperature. The trivalent lanthanides and pentavalent antimony are found to be fully ordered in the double-perovskite arrangement of alternating octahedra sharing corner oxygens. In such a structure, the lanthanide sublattice displays a classical fcc arrangement, an edge-shared network of tetrahedra known to result in geometric magnetic frustration. No magnetic ordering is observed in any of these compounds down to temperatures of 2 K, and in the case of the Dy-based compounds in particular, frustration of the magnetic ordering is clearly present. Lanthanide-based double perovskites are proposed to be excellent model systems for the detailed study of geometric magnetic frustration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...