Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Atmos Chem Phys ; 17(13): 8189-8210, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29151838

RESUMO

Anthropogenic nitrogen (N) emissions to the atmosphere have increased significantly the deposition of nitrate (NO3-) and ammonium (NH4+) to the surface waters of the open ocean, with potential impacts on marine productivity and the global carbon cycle. Global-scale understanding of the impacts of N deposition to the oceans is reliant on our ability to produce and validate models of nitrogen emission, atmospheric chemistry, transport and deposition. In this work, ~2900 observations of aerosol NO3- and NH4+ concentrations, acquired from sampling aboard ships in the period 1995 - 2012, are used to assess the performance of modelled N concentration and deposition fields over the remote ocean. Three ocean regions (the eastern tropical North Atlantic, the northern Indian Ocean and northwest Pacific) were selected, in which the density and distribution of observational data were considered sufficient to provide effective comparison to model products. All of these study regions are affected by transport and deposition of mineral dust, which alters the deposition of N, due to uptake of nitrogen oxides (NOx) on mineral surfaces. Assessment of the impacts of atmospheric N deposition on the ocean requires atmospheric chemical transport models to report deposition fluxes, however these fluxes cannot be measured over the ocean. Modelling studies such as the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP), which only report deposition flux are therefore very difficult to validate for dry deposition. Here the available observational data were averaged over a 5° × 5° grid and compared to ACCMIP dry deposition fluxes (ModDep) of oxidised N (NOy) and reduced N (NHx) and to the following parameters from the TM4-ECPL (TM4) model: ModDep for NOy, NHx and particulate NO3- and NH4+, and surface-level particulate NO3- and NH4+ concentrations. As a model ensemble, ACCMIP can be expected to be more robust than TM4, while TM4 gives access to speciated parameters (NO3- and NH4+) that are more relevant to the observed parameters and which are not available in ACCMIP. Dry deposition fluxes (CalDep) were calculated from the observed concentrations using estimates of dry deposition velocities. Model - observation ratios, weighted by grid-cell area and numbers of observations, (RA,n) were used to assess the performance of the models. Comparison in the three study regions suggests that TM4 over-estimates NO3- concentrations (RA,n = 1.4 - 2.9) and under-estimates NH4+ concentrations (RA,n = 0.5 - 0.7), with spatial distributions in the tropical Atlantic and northern Indian Ocean not being reproduced by the model. In the case of NH4+ in the Indian Ocean, this discrepancy was probably due to seasonal biases in the sampling. Similar patterns were observed in the various comparisons of CalDep to ModDep (RA,n = 0.6 - 2.6 for NO3-, 0.6 - 3.1 for NH4+). Values of RA,n for NHx CalDep - ModDep comparisons were approximately double the corresponding values for NH4+ CalDep - ModDep comparisons due to the significant fraction of gas-phase NH3 deposition incorporated in the TM4 and ACCMIP NHx model products. All of the comparisons suffered due to the scarcity of observational data and the large uncertainty in dry deposition velocities used to derive deposition fluxes from concentrations. These uncertainties have been a major limitation on estimates of the flux of material to the oceans for several decades. Recommendations are made for improvements in N deposition estimation through changes in observations, modelling and model - observation comparison procedures. Validation of modelled dry deposition requires effective comparisons to observable aerosol-phase species concentrations and this cannot be achieved if model products only report dry deposition flux over the ocean.

2.
Environ Sci Technol ; 49(8): 4861-7, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25835033

RESUMO

The influence of oceanic biological activity on sea spray aerosol composition, clouds, and climate remains poorly understood. The emission of organic material and gaseous dimethyl sulfide (DMS) from the ocean represents well-documented biogenic processes that influence particle chemistry in marine environments. However, the direct emission of particle-phase biogenic sulfur from the ocean remains largely unexplored. Here we present measurements of ocean-derived particles containing reduced sulfur, detected as elemental sulfur ions (e.g., (32)S(+), (64)S2(+)), in seven different marine environments using real-time, single particle mass spectrometry; these particles have not been detected outside of the marine environment. These reduced sulfur compounds were associated with primary marine particle types and wind speeds typically between 5 and 10 m/s suggesting that these particles themselves are a primary emission. In studies with measurements of seawater properties, chlorophyll-a and atmospheric DMS concentrations were typically elevated in these same locations suggesting a biogenic source for these sulfur-containing particles. Interestingly, these sulfur-containing particles only appeared at night, likely due to rapid photochemical destruction during the daytime, and comprised up to ∼67% of the aerosol number fraction, particularly in the supermicrometer size range. These sulfur-containing particles were detected along the California coast, across the Pacific Ocean, and in the southern Indian Ocean suggesting that these particles represent a globally significant biogenic contribution to the marine aerosol burden.


Assuntos
Aerossóis/análise , Atmosfera/química , Compostos de Enxofre/análise , Ritmo Circadiano , Oceano Índico , Espectrometria de Massas , Oceano Pacífico , Estações do Ano
3.
Ambio ; 42(1): 13-28, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23076973

RESUMO

Megacities are not only important drivers for socio-economic development but also sources of environmental challenges. Many megacities and large urban agglomerations are located in the coastal zone where land, atmosphere, and ocean meet, posing multiple environmental challenges which we consider here. The atmospheric flow around megacities is complicated by urban heat island effects and topographic flows and sea breezes and influences air pollution and human health. The outflow of polluted air over the ocean perturbs biogeochemical processes. Contaminant inputs can damage downstream coastal zone ecosystem function and resources including fisheries, induce harmful algal blooms and feedback to the atmosphere via marine emissions. The scale of influence of megacities in the coastal zone is hundreds to thousands of kilometers in the atmosphere and tens to hundreds of kilometers in the ocean. We list research needs to further our understanding of coastal megacities with the ultimate aim to improve their environmental management.


Assuntos
Atmosfera , Ecossistema , Biologia Marinha , Urbanização , Clima , Eutrofização , Efeito Estufa , Poluentes da Água/análise
4.
Appl Environ Microbiol ; 77(12): 4055-65, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21515719

RESUMO

Growth and productivity of phytoplankton substantially change organic matter characteristics, which affect bacterial abundance, productivity, and community structure in aquatic ecosystems. We analyzed bacterial community structures and measured activities inside and outside phytoplankton blooms in the western North Pacific Ocean by using bromodeoxyuridine immunocytochemistry and fluorescence in situ hybridization (BIC-FISH). Roseobacter/Rhodobacter, SAR11, Betaproteobacteria, Alteromonas, SAR86, and Bacteroidetes responded differently to changes in organic matter supply. Roseobacter/Rhodobacter bacteria remained widespread, active, and proliferating despite large fluctuations in organic matter and chlorophyll a (Chl-a) concentrations. The relative contribution of Bacteroidetes to total bacterial production was consistently high. Furthermore, we documented the unexpectedly large contribution of Alteromonas to total bacterial production in the bloom. Bacterial abundance, productivity, and growth potential (the proportion of growing cells in a population) were significantly correlated with Chl-a and particulate organic carbon concentrations. Canonical correspondence analysis showed that organic matter supply was critical for determining bacterial community structures. The growth potential of each bacterial group as a function of Chl-a concentration showed a bell-shaped distribution, indicating an optimal organic matter concentration to promote growth. The growth of Alteromonas and Betaproteobacteria was especially strongly correlated with organic matter supply. These data elucidate the distinctive ecological role of major bacterial taxa in organic matter cycling during open ocean phytoplankton blooms.


Assuntos
Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Biodiversidade , Eutrofização , Fitoplâncton/crescimento & desenvolvimento , Fitoplâncton/microbiologia , Bactérias/química , Bactérias/genética , Imunoquímica/métodos , Hibridização in Situ Fluorescente/métodos , Oceano Pacífico
5.
Anal Chem ; 81(21): 9021-6, 2009 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-19791769

RESUMO

We developed an equilibrator inlet-proton transfer reaction-mass spectrometry (EI-PTR-MS) method for fast detection of dimethyl sulfide (DMS) dissolved in seawater. Dissolved DMS extracted by bubbling pure nitrogen through the sample was continuously directed to the PTR-MS instrument. The equilibration of DMS between seawater and the carrier gas, and the response time of the system, were evaluated in the laboratory. DMS reached equilibrium with an overall response time of 1 min. The detection limit (50 pmol L(-1) at 5 s integration) was sufficient for detection of DMS concentrations in the open ocean. The EI-PTR-MS instrument was deployed during a research cruise in the western North Pacific Ocean. Comparison of the EI-PTR-MS results with results obtained by means of membrane tube equilibrator-gas chromatography/mass spectrometry agreed reasonably well on average (R(2) = 0.99). EI-PTR-MS captured temporal variations of dissolved DMS concentrations, including elevated peaks associated with patches of high biogenic activity. These results demonstrate that the EI-PTR-MS technique was effective for highly time-resolved measurements of DMS in the open ocean. Further measurements will improve our understanding of the biogeochemical mechanisms of the production, consumption, and distribution of DMS on the ocean surface and, hence, the air-sea flux of DMS, which is a climatically important species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...