Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioengineering (Basel) ; 11(2)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38391646

RESUMO

Shape-controlled 3D tissues resemble natural living tissues in human and animal bodies and are essential materials for developing and improving technologies in regenerative medicine, drug discovery, and biological robotics. In previous studies, shape-controlled 3D tissues were fabricated using scaffold structures or 3D bioprinting techniques. However, controlling the shape of 3D tissues without leaving non-natural materials inside the 3D tissue and efficiently fabricating them remains challenging. In this paper, we propose a novel method for fabricating shape-controlled 3D tissues free of non-natural materials using a flexible high-porosity porous structure (HPPS). The HPPS consisted of a micromesh with pore sizes of 14.87 ± 1.83 µm, lattice widths of 2.24 ± 0.10 µm, thicknesses of 9.96 ± 0.92 µm, porosity of 69.06 ± 3.30%, and an I-shaped microchamber of depth 555.26 ± 11.17 µm. U-87 human glioma cells were cultured in an I-shaped HPPS microchamber for 48 h. After cultivation, the 3D tissue was released within a few seconds while maintaining its I-shape. Specific chemicals, such as proteolytic enzymes, were not used. Moreover, the viability of the released cells composed of shape-controlled 3D tissues free of non-natural materials was above 90%. Therefore, the proposed fabrication method is recommended for shape-controlled 3D tissues free of non-natural materials without applying significant stresses to the cells.

2.
Micromachines (Basel) ; 14(2)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36838192

RESUMO

A single-cell microarray (SCM) influenced by gravitational force is expected to be one of the simple methods in various fields such as DNA analysis and antibody production. After trapping the cells in the SCM chip, it is necessary to remove the liquid from the SCM to wash away the un-trapped cells on the chip and treat the reagents for analysis. The flow generated during this liquid exchange causes the trapped cells to drop out of conventional vertical wells. In this study, we propose an inverse-tapered well to keep trapped cells from escaping from the SCM. The wells with tapered side walls have a reduced force of flow toward the opening, which prevents trapped cells from escaping. The proposed SCM chip was fabricated using 3D photolithography and polydimethylsiloxane molding techniques. In the trapping experiment using HeLa cells, the cell residual rate increased more than two-fold for the SCM chip with the inverse-tapered well with a taper angle of 30° compared to that for the conventional vertical SCM chip after multiple rounds of liquid exchanges. The proposed well structure increases the number of trapped cells and decreases the cell dropout rate to improve the efficiency of cellular analysis.

3.
Lab Chip ; 22(8): 1498-1507, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35311840

RESUMO

Selective cell retrieval from base material is necessary for developing and improving cell analyzing technologies as well as regenerative medicine. Many conventional technologies, such as micromanipulators, are developed for selective cell retrieval. However, selective cell retrieval at the single-cell level remains challenging because it is quite difficult to retrieve adhered single cells from base material with ease, rapidity, and no damage. Here, we propose a novel selective cell retrieval method using microarrays made of a light-responsive gas-generating polymer (LGP microarray). The convex LGP microarray was fabricated by a molding process using polystyrene microarray chips. LGP microarrays generate N2 gas when exposed to a specific light used for fluorescence microscopy. A human cervical cancer cell (HeLa) suspension was spread on the LGP microarray coated by fibronectin. After these HeLa cells were adhered to the surface of the LGP microarray structure, light at a wavelength of 365 nm was used to irradiate the LGP microarray. All the target HeLa cells were selectively released from the light-irradiated surface area of the LGP microarray by the generated N2 gas. The LGP microarray system was also applied to single-cell retrieval, and we easily and rapidly retrieved 100% of the single HeLa cells from the microarrays. In addition, approximately 90% of single HeLa cells retrieved from the LGP microarray proliferated on a chamber of a 96-well plate. Therefore, the LGP microarray system enables easy and selective retrieval of adhered cell groups or single cells with only harmless light irradiation.


Assuntos
Polímeros , Células HeLa , Humanos , Análise em Microsséries
4.
Micromachines (Basel) ; 13(2)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35208444

RESUMO

Conventional cell patterning methods are mainly based on hydrophilic/hydrophobic differences or chemical coating for cell adhesion/non-adhesion with wavering strength as it varies with the substrate surface conditions, including the cell type and the extracellular matrix components (ECMs) coating; thus, the versatility and stability of cell patterning methods must be improved. In this study, we propose a new cell patterning method using a light-responsive gas-generating polymer (LGP) and a conventional fluorescence microscope. Herein, cells and cellular tissues are easily released from the substrate surface by the nitrogen gas bubbles generated from LGP by the excitation light for fluorescence observation without harming the cells. The LGP-implanted chip was fabricated by packing LGP into a polystyrene (PS) microarray chip with a concave pattern. HeLa cells were spread on the LGP-implanted chips coated with three different ECMs (fibronectin, collagen, and poly-D-lysine), and all HeLa cells on the three LGP patterns were released. The pattern error between the LGP pattern and the remaining HeLa cells was 8.81 ± 4.24 µm, less than single-cell size. In addition, the LGP-implanted chip method can be applied to millimeter-scale patterns, with less than 30 s required for cell patterning. Therefore, the proposed method is a simple and rapid cell patterning method with high cell patterning accuracy of less than the cell size error, high scalability, versatility, and stability unaffected by the cell type or the ECM coating.

5.
Micromachines (Basel) ; 11(6)2020 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-32512915

RESUMO

2D and 3D topographic cues made of photoresist, a polymer, are used for cell culture and cell analysis. Photoresists used for cell analysis provide the surface conditions necessary for proper cell growth, along with patterning properties of a wide range and high precision, and low auto-fluorescence that does not affect fluorescence imaging. In this study, we developed a thick negative photoresist SJI-001 possessing the aforementioned properties. We evaluated the surface conditions of SJI-001 affecting cell culture. First, we studied the wettability of SJI-001, which was changed by plasma treatment, conducted as a pretreatment on a plastic substrate before cell seeding. SJI-001 was more chemically stable than SU-8 used for fabricating the micro-electromechanical systems (MEMS). Furthermore, the doubling time and adhesion rate of adherent HeLa cells cultured on untreated SJI-001 were 25.2 h and 74%, respectively, thus indicating its suitability for cell culture over SU-8. In addition, we fabricated a cell culture plate with a 3D lattice structure, three micrometers in size, using SJI-001. HeLa cells seeded on this plate remained attached over five days. Therefore, SJI-001 exhibits surface conditions suitable for cell culture and has several bioapplications including microstructures and cell chips for cell culture and cell analysis.

6.
Microphysiol Syst ; 42020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34131641

RESUMO

BACKGROUND: Decreasing the amount of liquid inside microphysiological systems (MPS) can help uncover the presence of toxic drug metabolites. However, maintaining near-physiological volume ratios among blood surrogate and multiple organ mimics is technically challenging. Here, we developed a body cube and tested its ability to support four human tissues (kidney, GI tract, liver, and bone marrow) scaled down from in vivo functional volumes by a factor of 73,000 with 80 µL of cell culture medium (corresponding to ~1/73000th of in vivo blood volume). METHODS: GI tract cells (Caco-2), liver cells (HepG2/C3A), bone marrow cells (Meg-01), and kidney cells (HK-2) were co-cultured inside the body cube with 80 µL of common, recirculating cell culture medium for 72 h. The system was challenged with acetaminophen and troglitazone, and concentrations of aspartate aminotransferase (AST), albumin, and urea were monitored over time. RESULTS: Cell viability analysis showed that 95.5%±3.2% of liver cells, 89.8%±4.7% of bone marrow cells, 82.8%±8.1% of GI tract cells, and 80.1%±11.5% of kidney cells were viable in co-culture for 72 h. Both acetaminophen and troglitazone significantly lowered cell viability in the liver chamber as indicated by viability analysis and a temporary increase of AST in the cell culture medium. Both drugs also lowered urea production in the liver by up to 45%. CONCLUSIONS: Cell viability data and the production of urea and albumin indicate that the co-culture of GI tract, liver, bone marrow, and kidney tissues with near-physiological volume ratios of tissues to blood surrogate is possible for up to 72 h. The body-cube was capable of reproducing liver toxicity to HepG2/C3A liver cells via acetaminophen and troglitazone. The developed design provides a viable format for acute toxicity testing with near-physiological blood surrogate to tissue volume ratios.

7.
Micromachines (Basel) ; 11(1)2019 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-31906208

RESUMO

A cell culture on a scaffold has the advantages of functionality and easy handling, because the geometry of the cellular tissue is controlled by designing the scaffold. To create complex cellular tissue, scaffolds should be complex two-dimensional (2D) and three-dimensional (3D) structures. However, it is difficult to fabricate a scaffold with a 2D and 3D structure because the shape, size, and fabrication processes of a 2D structure in creating a cell layer, and a 3D structure containing cells, are different. In this research, we propose a micropatterning method for porous materials using the difference of the glass transition temperature between exposed and unexposed areas of a thick-photoresist. Since the proposed method does not require a vacuum, high temperature, or high voltage, it can be used for fabricating various structures with a wide range of scales, regardless of the materials used. Additionally, the patterning area can be fabricated accurately by photolithography. To evaluate the proposed method, a membrane integrated scaffold (MIS) with a 2D porous membrane and 3D porous material was fabricated. The MIS had a porous membrane with a pore size of 4 µm or less, which was impermeable to cells, and a porous material which was capable of containing cells. By seeding HUVECs and HeLa cells on each side of the MIS, the cellular tissue was formed with the designed geometry.

8.
Micromachines (Basel) ; 9(12)2018 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-30572685

RESUMO

Culturing cellular tissues inside a microchannel using an artificial three-dimensional (3D) microstructure is normally conducted to elucidate and reproduce a biological function. The thick photoresist SU-8, which has a microscale resolution and high aspect ratio, is widely used for the fabrication of microchannels and scaffolds having 3D structures for cell culture. However, it is difficult to accurately fabricate a mesh structure with a pore size that is smaller than the cells that has an overall height greater than 50 µm because of the deterioration of the verticality of exposure light and the diffusion of acid, which accelerates the crosslinking reaction in the SU-8 layer. In this study, we propose a method of integrating a vertical porous membrane into a microchannel. The resolution of the vertical porous membrane becomes more accurate through inclined oxygen ashing, without degrading the robustness. Because a single mask pattern is required for the proposed method, assembly error is not generated using the assembly-free process. The fabricated vertical porous membrane in the microchannel contained micropores that were smaller than the cells and sufficiently robust for a microfluidic system. HepG2 cells were attached three-dimensionally on the fabricated vertical porous membrane to demonstrate 3D cell culture.

9.
Lab Chip ; 16(14): 2719-29, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27332143

RESUMO

We have developed an expandable modular body-on-a-chip system that allows for a plug-and-play approach with several in vitro tissues. The design consists of single-organ chips that are combined with each other to yield a multi-organ body-on-a-chip system. Fluidic flow through the organ chips is driven via gravity and controlled passively via hydraulic resistances of the microfluidic channel network. Such pumpless body-on-a-chip devices are inexpensive and easy to use. We tested the device by culturing GI tract tissue and liver tissue within the device. Integrated Ag/AgCl electrodes were used to measure the resistance across the GI tract cell layer. The transepithelial resistance (TEER) reached values between 250 to 650 Ω cm(2) throughout the 14 day co-culture period. These data indicate that the GI tract cells retained their viability and the GI tract layer as a whole retained its barrier function. Throughout the 14 day co-culture period we measured low amounts of aspartate aminotransferase (AST, ∼10-17.5 U L(-1)), indicating low rates of liver cell death. Metabolic rates of hepatocytes were comparable to those of hepatocytes in single-organ fluidic cell culture systems (albumin production ranged between 3-6 µg per day per million hepatocytes and urea production ranged between 150-200 µg per day per million hepatocytes). Induced CYP activities were higher than previously measured with microfluidic liver only systems.


Assuntos
Técnicas de Cocultura/instrumentação , Técnicas de Cocultura/métodos , Trato Gastrointestinal/citologia , Fígado/citologia , Albuminas/metabolismo , Aspartato Aminotransferases/metabolismo , Células CACO-2 , Morte Celular , Citocromo P-450 CYP1A1/metabolismo , Eletrodos , Epitélio/metabolismo , Desenho de Equipamento/instrumentação , Desenho de Equipamento/métodos , Hepatócitos/citologia , Humanos , Dispositivos Lab-On-A-Chip , Técnicas de Cultura de Órgãos/instrumentação , Técnicas de Cultura de Órgãos/métodos , Ureia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...