Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 247: 118202, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38224937

RESUMO

Recently, global warming has become a prominent topic, including its impacts on human health. The number of heat illness cases requiring ambulance transport has been strongly linked to increasing temperature and the frequency of heat waves. Thus, a potential increase in the number of cases in the future is a concern for medical resource management. In this study, we estimated the number of heat illness cases in three prefectures of Japan under 2 °C global warming scenarios, approximately corresponding to the 2040s. Based on the population composition, a regression model was used to estimate the number of heat illness cases with an input parameter of time-dependent meteorological ambient temperature or computed thermophysiological response of test subjects in large-scale computation. We generated 504 weather patterns using 2 °C global warming scenarios. The large-scale computational results show that daily amount of sweating increased twice and the core temperature increased by maximum 0.168 °C, suggesting significant heat strain. According to the regression model, the estimated number of heat illness cases in the 2040s of the three prefectures was 1.90 (95%CI: 1.35-2.38) times higher than that in the 2010s. These computational results suggest the need to manage ambulance services and medical resource allocation, including intervention for public awareness of heat illnesses. This issue will be important in other aging societies in near future.


Assuntos
Mudança Climática , Transtornos de Estresse por Calor , Humanos , Aquecimento Global , Temperatura Alta , Japão/epidemiologia , Morbidade
2.
Vaccines (Basel) ; 11(9)2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37766133

RESUMO

Multiple COVID-19 waves have been observed worldwide, with varying numbers of positive cases. Population-level immunity can partly explain a transient suppression of epidemic waves, including immunity acquired after vaccination strategies. In this study, we aimed to estimate population-level immunity in 47 Japanese prefectures during the three waves from April 2021 to September 2022. For each wave, characterized by the predominant variants, namely, Delta, Omicron, and BA.5, the estimated rates of population-level immunity in the 10-64-years age group, wherein the most positive cases were observed, were 20%, 35%, and 45%, respectively. The number of infected cases in the BA.5 wave was inversely associated with the vaccination rates for the second and third injections. We employed machine learning to replicate positive cases in three Japanese prefectures to validate the reliability of our model for population-level immunity. Using interpolation based on machine learning, we estimated the impact of behavioral factors and vaccination on the fifth wave of new positive cases that occurred during the Tokyo 2020 Olympic Games. Our computational results highlighted the critical role of population-level immunity, such as vaccination, in infection suppression. These findings underscore the importance of estimating and monitoring population-level immunity to predict the number of infected cases in future waves. Such estimations that combine numerical derivation and machine learning are of utmost significance for effective management of medical resources, including the vaccination strategy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...