Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 15(16): 6151-6159, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38665533

RESUMO

Recently, planar and neutral tricoordinated oxygen embedded in graphene has been imaged experimentally (Nat. Commun., 2019, 10, 4570-4577). In this work, this unusual chemical species is studied utilizing a variety of state-of-the-art methods and combining periodic calculations with a fragmental approach. Several factors influencing the stability of trivalent oxygen are identified. A σ-donation and a π-backdonation mechanism between graphite and oxygen is established. π-Local aromaticity, with a delocalized 4c-2e bond involving the oxygen atom and the three nearest carbon atoms aids in the stabilization of this system. In addition, the framework in which the oxygen is embedded is crucial too to the stabilization, helping to delocalize the "extra" electron pair in the virtual orbitals. Based on the understanding gathered in this work, a set of organic molecules containing planar and neutral trivalent oxygen is theoretically proposed for the first time.

2.
Chemphyschem ; : e202400095, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38525872

RESUMO

The catalytic dehydrogenation of light alkanes is key to transform low-cost hydrocarbons to high value-added chemicals. Although Pt is extremely efficient at catalyzing this reaction, it suffers from coke formation that deactivates the catalyst. Dopants such as Sn are widely used to increase the stability and lifetime of Pt. In this work, the dehydrogenation reaction of ethane catalyzed by Pt3 and Pt2X (X=Si, Ge, Sn, P and Al) nanocatalysts has been studied computationally by means of density functional calculations. Our results show how the presence of dopants in the nanocluster structure affects its electronic properties and catalytic activity. Exploration of the potential energy surfaces show that non-doped catalyst Pt3 present low selectivity towards ethylene formation, where acetylene resulting from double dehydrogenation reaction will be obtained as a side product (in agreement with the experimental evidence). On the contrary, the inclusion of Si, Ge, Sn, P or Al as dopant agents implies a selectivity enhancement, where acetylene formation is not energetically favoured. These results demonstrate the effectiveness of such dopant elements for the design of Pt-based catalysts on ethane dehydrogenation.

3.
Sci Rep ; 12(1): 13032, 2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35906454

RESUMO

Recently, the edges of single-layer graphene have been experimentally doped with silicon atoms by means of scanning transmission electron microscopy. In this work, density functional theory is applied to model and characterize a wide range of experimentally inspired silicon doped zigzag-type graphene edges. The thermodynamic stability is assessed and the electronic and magnetic properties of the most relevant edge configurations are unveiled. Importantly, we show that silicon doping of graphene edges can induce a reversion of the spin orientation on the adjacent carbon atoms, leading to novel magnetic properties with possible applications in the field of spintronics.

5.
J Chem Phys ; 156(17): 174301, 2022 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-35525659

RESUMO

The high catalytic activity of Pt is accompanied by a high affinity for CO, making it extremely susceptible to poisoning. Such CO poisoning limits the use of proton exchange membrane fuel cells. In this work, using global minima search techniques and exhaustive electronic structure characterization, the dopant concentration is pinpointed as a crucial factor to improve the CO tolerance of Pt catalysts. By investigating the PtGe nanoclusters of different sizes and compositions, we found that, for those clusters with roughly the same amount of Pt and Ge, the binding to CO is weakened significantly. The uniqueness of the PtGe equimolar clusters is traced down to the electronic effects. The strong covalency and electrostatic stabilization arising from the advantageous Pt-Ge mixing make the equimolar clusters highly resistant toward CO poisoning and therefore more durable. Importantly, the novel catalysts not only are more resistant to deactivation but also remain catalytically active toward hydrogen oxidation. Representative clusters are additionally deposited on graphene with a pentagon-octagon-pentagon (5-8-5) reconstructed divacancy. The remarkable results of free-standing clusters hold true for surface mounted clusters, in which the interaction with CO is dramatically weakened for those compounds with a Pt:Ge ratio of 1:1. Our results demonstrate that Ge can be a promising alloying agent to mitigate the deactivation of Pt and that the dopant concentration is a critical factor in the design of advanced catalysts.

6.
Chemphyschem ; 22(15): 1603-1610, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34058042

RESUMO

The vulnerability towards CO poisoning is a major drawback affecting the efficiency and long-term performance of platinum catalysts in fuel cells. In the present work, by a combination of density functional theory calculations and mass spectrometry experiments, we test and explain the promotional effect of Ge on Pt catalysts with higher resistance to deactivation via CO poisoning. A thorough exploration of the configurational space of gas-phase Ptn + and GePtn-1 + (n=5-9) clusters using global minima search techniques and the subsequent electronic structure analysis reveals that germanium doping reduces the binding strength between Pt and CO by hindering the 2π-back-donation. Importantly, the clusters remain catalytically active towards H2 dissociation. The ability of Ge to weaken the Pt-CO interaction was confirmed by mass spectrometry experiments. Ge can be a promising alloying agent to tune the selectivity and improve the durability of Pt particles, thus opening the way to novel catalytic alternatives for fuel cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...