Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nutr Metab Cardiovasc Dis ; 33(3): 671-681, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36646601

RESUMO

BACKGROUND AND AIMS: Obesity-related heart failure is exacerbated by excessive intake of saturated fats such as palmitate (PA). Lycopene (LYC) possesses anti-lipidemic, antioxidant, cytoprotective, and anti-inflammatory effects. This study, therefore, evaluated the impact of LYC against PA-invoked cardiotoxicity. METHODS AND RESULTS: Thirty-six female rats were equally divided into six groups: control; PA (5 mM); PA + LYC (24 mg/kg); PA + LYC (48 mg/kg); LYC (24 mg/kg); and LYC (48 mg/kg). The PA was administered five times weekly for seven weeks, while the LYC was given for the last two weeks. Lipids in the blood and the heart were estimated, as were oxidative stress and antioxidant indices, cardiac function, inflammation, and histology. Palmitate overload occasioned a significant (p < 0.05) increase in cardiac cholesterol (50%), phospholipids (19%), and non-esterified fatty acids (40%). However, triglyceride levels decreased (38%). Furthermore, malondialdehyde (45%), hydrogen peroxide (33%) levels and myeloperoxidase activity increased (79%). Also, cardiac gamma-glutamyl transferase (50%), serum creatine kinase activities (1.34 folds), NF-kB, interleukin1ß, and interleukin-6 mRNA expression increased in the PA group relative to the control. In contrast, reduced glutathione (13%) and nitric oxide levels (22%), interleukin-10 mRNA expression, cardiac creatine kinase (35%), lactate dehydrogenase (33%), aspartate, and alanine transaminase activities decreased markedly (15- and 10%, respectively). Also, PA caused hyperemia, congestion of the cardiac interstitium, and infiltration of inflammatory cells. However, treatment with LYC reversed the features of cardiotoxicity and histological complications caused by PA. These observations are likely because LYC has anti-inflammatory, antioxidant, and cytoprotective properties. CONCLUSION: Thus, LYC might be an appropriate remedy to manage PA-induced cardiotoxicity in female rats.


Assuntos
Antioxidantes , NF-kappa B , Feminino , Ratos , Animais , Licopeno/farmacologia , Antioxidantes/farmacologia , NF-kappa B/genética , Ratos Wistar , Metabolismo dos Lipídeos , Cardiotoxicidade , Estresse Oxidativo , Inflamação , RNA Mensageiro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...