Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Photosynth Res ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38662326

RESUMO

It has been thoroughly documented, by using 31P-NMR spectroscopy, that plant thylakoid membranes (TMs), in addition to the bilayer (or lamellar, L) phase, contain at least two isotropic (I) lipid phases and an inverted hexagonal (HII) phase. However, our knowledge concerning the structural and functional roles of the non-bilayer phases is still rudimentary. The objective of the present study is to elucidate the origin of I phases which have been hypothesized to arise, in part, from the fusion of TMs (Garab et al. 2022 Progr Lipid Res 101,163). We take advantage of the selectivity of wheat germ lipase (WGL) in eliminating the I phases of TMs (Dlouhý et al. 2022 Cells 11: 2681), and the tendency of the so-called BBY particles, stacked photosystem II (PSII) enriched membrane pairs of 300-500 nm in diameter, to form large laterally fused sheets (Dunahay et al. 1984 BBA 764: 179). Our 31P-NMR spectroscopy data show that BBY membranes contain L and I phases. Similar to TMs, WGL selectively eliminated the I phases, which at the same time exerted no effect on the molecular organization and functional activity of PSII membranes. As revealed by sucrose-density centrifugation, magnetic linear dichroism spectroscopy and scanning electron microscopy, WGL disassembled the large laterally fused sheets. These data provide direct experimental evidence on the involvement of I phase(s) in the fusion of stacked PSII membrane pairs, and strongly suggest the role of non-bilayer lipids in the self-assembly of the TM system.

2.
Cells ; 12(10)2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37408264

RESUMO

The growth of bacterial populations has been described as a dynamic process of continuous reproduction and cell death. However, this is far from the reality. In a well fed, growing bacterial population, the stationary phase inevitably occurs, and it is not due to accumulated toxins or cell death. A population spends the most time in the stationary phase, where the phenotype of the cells alters from the proliferating ones, and only the colony forming unit (CFU) decreases after a while, not the total cell concentration. A bacterial population can be considered as a virtual tissue as a result of a specific differentiation process, in which the exponential-phase cells develop to stationary-phase cells and eventually reach the unculturable form. The richness of the nutrient had no effect on growth rate or on stationary cell density. The generation time seems not to be a constant value, but it depended on the concentration of the starter cultures. Inoculations with serial dilutions of stationary populations reveal a so-called minimal stationary cell concentration (MSCC) point, up to which the cell concentrations remain constant upon dilutions; that seems to be universal among unicellular organisms.


Assuntos
Divisão Celular , Citocinese , Synechococcus , Synechococcus/crescimento & desenvolvimento , Synechococcus/metabolismo , Técnicas de Cultura Celular por Lotes , Proteômica , Meios de Cultura/metabolismo , Proteínas de Bactérias/metabolismo
3.
Front Plant Sci ; 14: 1051711, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37089643

RESUMO

Salt stress triggers an Stt7-mediated LHCII-phosphorylation signaling mechanism similar to light-induced state transitions. However, phosphorylated LHCII, after detaching from PSII, does not attach to PSI but self-aggregates instead. Salt is a major stress factor in the growth of algae and plants. Here, our study mainly focuses on the organization of the photosynthetic apparatus to the long-term responses of Chlamydomonas reinhardtii to elevated NaCl concentrations. We analyzed the physiological effects of salt treatment at a cellular, membrane, and protein level by microscopy, protein profile analyses, transcripts, circular dichroism spectroscopy, chlorophyll fluorescence transients, and steady-state and time-resolved fluorescence spectroscopy. We have ascertained that cells that were grown in high-salinity medium form palmelloids sphere-shaped colonies, where daughter cells with curtailed flagella are enclosed within the mother cell walls. Palmelloid formation depends on the presence of a cell wall, as it was not observed in a cell-wall-less mutant CC-503. Using the stt7 mutant cells, we show Stt7 kinase-dependent phosphorylation of light-harvesting complex II (LHCII) in both short- and long-term treatments of various NaCl concentrations-demonstrating NaCl-induced state transitions that are similar to light-induced state transitions. The grana thylakoids were less appressed (with higher repeat distances), and cells grown in 150 mM NaCl showed disordered structures that formed diffuse boundaries with the flanking stroma lamellae. PSII core proteins were more prone to damage than PSI. At high salt concentrations (100-150 mM), LHCII aggregates accumulated in the thylakoid membranes. Low-temperature and time-resolved fluorescence spectroscopy indicated that the stt7 mutant was more sensitive to salt stress, suggesting that LHCII phosphorylation has a role in the acclimation and protection of the photosynthetic apparatus.

4.
Cells ; 11(17)2022 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-36078087

RESUMO

It is well established that plant thylakoid membranes (TMs), in addition to a bilayer, contain two isotropic lipid phases and an inverted hexagonal (HII) phase. To elucidate the origin of non-bilayer lipid phases, we recorded the 31P-NMR spectra of isolated spinach plastoglobuli and TMs and tested their susceptibilities to lipases and proteases; the structural and functional characteristics of TMs were monitored using biophysical techniques and CN-PAGE. Phospholipase-A1 gradually destroyed all 31P-NMR-detectable lipid phases of isolated TMs, but the weak signal of isolated plastoglobuli was not affected. Parallel with the destabilization of their lamellar phase, TMs lost their impermeability; other effects, mainly on Photosystem-II, lagged behind the destruction of the original phases. Wheat-germ lipase selectively eliminated the isotropic phases but exerted little or no effect on the structural and functional parameters of TMs-indicating that the isotropic phases are located outside the protein-rich regions and might be involved in membrane fusion. Trypsin and Proteinase K selectively suppressed the HII phase-suggesting that a large fraction of TM lipids encapsulate stroma-side proteins or polypeptides. We conclude that-in line with the Dynamic Exchange Model-the non-bilayer lipid phases of TMs are found in subdomains separated from but interconnected with the bilayer accommodating the main components of the photosynthetic machinery.


Assuntos
Bicamadas Lipídicas , Tilacoides , Lipase/metabolismo , Bicamadas Lipídicas/metabolismo , Espectroscopia de Ressonância Magnética , Peptídeo Hidrolases/metabolismo , Tilacoides/metabolismo
5.
Plant Cell Physiol ; 63(9): 1205-1214, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35792507

RESUMO

Higher plants acclimate to changes in light conditions by adjusting the thylakoid membrane ultrastructure. Additionally, excitation energy transfer between photosystem II (PSII) and photosystem I (PSI) is balanced in a process known as state transition. These modifications are mediated by reversible phosphorylation of Lhcb1 and Lhcb2 proteins in different pools of light-harvesting complex (LHCII) trimers. Our recent study demonstrated that chloroplast acetyltransferase NUCLEAR SHUTTLE INTERACTING (NSI)/GNAT2 (general control non-repressible 5 (GCN5)-related N-acetyltransferase 2) is also needed for the regulation of light harvesting, evidenced by the inability of the gnat2 mutant to perform state transitions although there are no defects in LHCII phosphorylation. Here, we show that despite contrasting phosphorylation states of LHCII, grana packing in the gnat2 and state transition 7 (stn7) mutants possesses similar features, as the thylakoid structure of the mutants does not respond to the shift from darkness to light, which is in striking contrast to wild type (Wt). Circular dichroism and native polyacrylamide gel electrophoresis analyses further revealed that the thylakoid protein complex organization of gnat2 and stn7 resembles each other, but differ from that of Wt. Also, the location of the phosphorylated Lhcb2 as well as the LHCII antenna within the thylakoid network in gnat2 mutant is different from that of Wt. In gnat2, the LHCII antenna remains largely in grana stacks, where the phosphorylated Lhcb2 is found in all LHCII trimer pools, including those associated with PSII. These results indicate that in addition to phosphorylation-mediated regulation through STN7, the GNAT2 enzyme is involved in the organization and dynamics of thylakoid structure, probably through the regulation of chloroplast protein acetylation.


Assuntos
Arabidopsis , Tilacoides , Acetiltransferases/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Fosforilação , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Tilacoides/metabolismo
6.
Front Plant Sci ; 12: 725699, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34868111

RESUMO

The effects of salt stress condition on the growth, morphology, photosynthetic performance, and paramylon content were examined in the mixotrophic, unicellular, flagellate Euglena gracilis. We found that salt stress negatively influenced cell growth, accompanied by a decrease in chlorophyll (Chl) content. Circular dichroism (CD) spectroscopy revealed the changes in the macro-organization of pigment-protein complexes due to salt treatment, while the small-angle neutron scattering (SANS) investigations suggested a reduction in the thylakoid stacking, an effect confirmed by the transmission electron microscopy (TEM). At the same time, the analysis of the thylakoid membrane complexes using native-polyacrylamide gel electrophoresis (PAGE) revealed no significant change in the composition of supercomplexes of the photosynthetic apparatus. Salt stress did not substantially affect the photosynthetic activity, as reflected by the fact that Chl fluorescence yield, electron transport rate (ETR), and energy transfer between the photosystems did not change considerably in the salt-grown cells. We have observed notable increases in the carotenoid-to-Chl ratio and the accumulation of paramylon in the salt-treated cells. We propose that the accumulation of storage polysaccharides and changes in the pigment composition and thylakoid membrane organization help the adaptation of E. gracilis cells to salt stress and contribute to the maintenance of cellular processes under stress conditions.

7.
Sci Rep ; 10(1): 11959, 2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-32686730

RESUMO

The role of non-bilayer lipids and non-lamellar lipid phases in biological membranes is an enigmatic problem of membrane biology. Non-bilayer lipids are present in large amounts in all membranes; in energy-converting membranes they constitute about half of their total lipid content-yet their functional state is a bilayer. In vitro experiments revealed that the functioning of the water-soluble violaxanthin de-epoxidase (VDE) enzyme of plant thylakoids requires the presence of a non-bilayer lipid phase. 31P-NMR spectroscopy has provided evidence on lipid polymorphism in functional thylakoid membranes. Here we reveal reversible pH- and temperature-dependent changes of the lipid-phase behaviour, particularly the flexibility of isotropic non-lamellar phases, of isolated spinach thylakoids. These reorganizations are accompanied by changes in the permeability and thermodynamic parameters of the membranes and appear to control the activity of VDE and the photoprotective mechanism of non-photochemical quenching of chlorophyll-a fluorescence. The data demonstrate, for the first time in native membranes, the modulation of the activity of a water-soluble enzyme by a non-bilayer lipid phase.


Assuntos
Bicamadas Lipídicas/química , Oxirredutases/metabolismo , Tilacoides/química , Água/química , Varredura Diferencial de Calorimetria , Compostos de Epóxi/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Luz , Lipídeos/química , Espectroscopia de Ressonância Magnética , Solubilidade , Spinacia oleracea/metabolismo , Temperatura , Xantofilas/metabolismo
8.
J Phys Chem B ; 123(5): 1090-1098, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30604975

RESUMO

Anisotropic circular dichroism (ACD) spectroscopy of macroscopically aligned molecules reveals additional information about their excited states that is lost in the CD of randomly oriented solutions. ACD spectra of light-harvesting complex II (LHCII)-the main peripheral antenna of photosystem II in plants-in oriented lipid bilayers were recorded from the far-UV to the visible wavelength region. ACD spectra show a drastically enhanced magnitude and level of detail compared to the isotropic CD spectra, resolving a greater number of bands and weak optical transitions. Exciton calculations show that the spectral features in the chlorophyll Q y region are well-reproduced by an existing Hamiltonian for LHCII, providing further evidence for the identity of energy sinks at chlorophylls a603 and a610 in the stromal layer and chlorophylls a604 and a613 in the luminal layer. We propose ACD spectroscopy to be a valuable tool linking the three-dimensional structure and the photophysical properties of pigment-protein complexes.

9.
Physiol Plant ; 166(1): 278-287, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30666653

RESUMO

Earlier experiments, using 31 P-NMR and time-resolved merocyanine fluorescence spectroscopy, have shown that isolated intact, fully functional plant thylakoid membranes, in addition to the bilayer phase, contain three non-bilayer (or non-lamellar) lipid phases. It has also been shown that the lipid polymorphism of thylakoid membranes can be characterized by remarkable plasticity, i.e. by significant variations in 31 P-NMR signatures. However, changes in the lipid-phase behaviour of thylakoids could not be assigned to changes in the overall membrane organization and the photosynthetic activity, as tested by circular dichroism and 77 K fluorescence emission spectroscopy and the magnitude of the variable fluorescence of photosystem II, which all showed only marginal variations. In this work, we investigated in more detail the temporal stability of the different lipid phases by recording 31 P-NMR spectra on isolated thylakoid membranes that were suspended in sorbitol- or NaCl-based media. We observed, at 5°C during 8 h in the dark, substantial gradual enhancement of the isotropic lipid phases and diminishment of the bilayer phase in the sorbitol-based medium. These changes compared well with the gradually increasing membrane permeability, as testified by the gradual acceleration of the decay of flash-induced electrochromic absorption changes and characteristic changes in the kinetics of fast chlorophyll a-fluorescence transients; all variations were much less pronounced in the NaCl-based medium. These observations suggest that non-bilayer lipids and non-lamellar lipid phases play significant roles in the structural dynamics and functional plasticity of thylakoid membranes.


Assuntos
Membranas Intracelulares/metabolismo , Bicamadas Lipídicas/metabolismo , Tilacoides/metabolismo , Cinética , Espectroscopia de Ressonância Magnética , Complexo de Proteína do Fotossistema II/metabolismo
10.
Cell Mol Life Sci ; 76(5): 865-871, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30465083

RESUMO

Prior to the cytokinesis, the cell-matrix interactions should be disrupted, and the mitotic cells round up. Prerequisite of mitosis, the centrosomes duplicate, spindle fibers are generated and move away from each other to opposite sides of the cells marking the cell poles. Later, an invagination in the plasma membrane is formed a few minutes after anaphase. This furrow ingression is driven by a contractile actomyosin ring, whose assembly is regulated by RhoA GTPase. At the completion of cytokinesis, the two daughter cells are still connected by a thin intercellular bridge, which is subjected to abscission, as the terminal step of cytokinesis. Here, it is overviewed, how syndecan-4, a transmembrane, heparan sulfate proteoglycan, can contribute to these processes in a phosphorylation-dependent manner.


Assuntos
Divisão Celular , Proteoglicanas de Heparan Sulfato/fisiologia , Actinas/química , Animais , Citocinese , Humanos , Mitose , Sindecana-4/fisiologia , Proteína rhoA de Ligação ao GTP/fisiologia
11.
J Plant Physiol ; 223: 96-104, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29558689

RESUMO

Phosphatidylglycerol is an essential phospholipid for photosynthesis and other cellular processes. We investigated the role of phosphatidylglycerol in cell division and metabolism in a phophatidylglycerol-auxotrophic strain of Synechococcus PCC7942. Here we show that phosphatidylglycerol is essential for the photosynthetic electron transfer and for the oligomerisation of the photosynthetic complexes, notably, we revealed that this lipid is important for non-linear electron transport. Furthermore, we demonstrate that phosphatidylglycerol starvation elevated the expressions of proteins of nitrogen and carbon metabolism. Moreover, we show that phosphatidylglycerol-deficient cells changed the morphology, became elongated, the FtsZ ring did not assemble correctly, and subsequently the division was hindered. However, supplementation with phosphatidylglycerol restored the ring-like structure at the mid-cell region and the normal cell size, demonstrating the phosphatidylglycerol is needed for normal septum formation. Taken together, central roles of phosphatidylglycerol were revealed; it is implicated in the photosynthetic activity, the metabolism and the fission of bacteria.


Assuntos
Divisão Celular , Fosfatidilgliceróis/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Synechococcus/fisiologia , Transporte de Elétrons
12.
Sci Rep ; 8(1): 2755, 2018 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-29426901

RESUMO

Photosystem II (PSII) catalyses the photoinduced oxygen evolution and, by producing reducing equivalents drives, in concert with PSI, the conversion of carbon dioxide to sugars. Our knowledge about the architecture of the reaction centre (RC) complex and the mechanisms of charge separation and stabilisation is well advanced. However, our understanding of the processes associated with the functioning of RC is incomplete: the photochemical activity of PSII is routinely monitored by chlorophyll-a fluorescence induction but the presently available data are not free of controversy. In this work, we examined the nature of gradual fluorescence rise of PSII elicited by trains of single-turnover saturating flashes (STSFs) in the presence of a PSII inhibitor, permitting only one stable charge separation. We show that a substantial part of the fluorescence rise originates from light-induced processes that occur after the stabilisation of charge separation, induced by the first STSF; the temperature-dependent relaxation characteristics suggest the involvement of conformational changes in the additional rise. In experiments using double flashes with variable waiting times (∆τ) between them, we found that no rise could be induced with zero or short ∆τ, the value of which depended on the temperature - revealing a previously unknown rate-limiting step in PSII.


Assuntos
Clorofila A/metabolismo , Fluorescência , Complexo de Proteína do Fotossistema II/metabolismo , Spinacia oleracea/metabolismo , Synechococcus/metabolismo , Synechocystis/metabolismo , Tilacoides/metabolismo , Fotossíntese , Complexo de Proteína do Fotossistema II/antagonistas & inibidores , Temperatura
13.
PLoS One ; 12(11): e0187094, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29121646

RESUMO

The small GTPases of the Rho family comprising RhoA, Rac1 and Cdc42 function as molecular switches controlling several essential biochemical pathways in eukaryotic cells. Their activity is cycling between an active GTP-bound and an inactive GDP-bound conformation. The exchange of GDP to GTP is catalyzed by guanine nucleotide exchange factors (GEFs). Here we report a novel regulatory mechanism of Rac1 activity, which is controlled by a phosphomimetic (Ser179Glu) mutant of syndecan-4 (SDC4). SDC4 is a ubiquitously expressed transmembrane, heparan sulfate proteoglycan. In this study we show that the Ser179Glu mutant binds strongly Tiam1, a Rac1-GEF reducing Rac1-GTP by 3-fold in MCF-7 breast adenocarcinoma cells. Mutational analysis unravels the PDZ interaction between SDC4 and Tiam1 is indispensable for the suppression of the Rac1 activity. Neither of the SDC4 interactions is effective alone to block the Rac1 activity, on the contrary, lack of either of interactions can increase the activity of Rac1, therefore the Rac1 activity is the resultant of the inhibitory and stimulatory effects. In addition, SDC4 can bind and tether RhoGDI1 (GDP-dissociation inhibitor 1) to the membrane. Expression of the phosphomimetic SDC4 results in the accumulation of the Rac1-RhoGDI1 complex. Co-immunoprecipitation assays (co-IP-s) reveal that SDC4 can form complexes with RhoGDI1. Together, the regulation of the basal activity of Rac1 is fine tuned and SDC4 is implicated in multiple ways.


Assuntos
Mutação/genética , Sindecana-4/genética , Sindecana-4/metabolismo , Proteína 1 Indutora de Invasão e Metástase de Linfoma de Células T/química , Proteína 1 Indutora de Invasão e Metástase de Linfoma de Células T/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Sequência de Aminoácidos , Humanos , Células MCF-7 , Modelos Biológicos , Domínios PDZ , Ligação Proteica , Proteína Quinase C-alfa/metabolismo , Sindecana-4/química , Quinases Ativadas por p21/metabolismo , Inibidor alfa de Dissociação do Nucleotídeo Guanina rho/metabolismo
14.
Sci Rep ; 7(1): 13343, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-29042649

RESUMO

Chloroplast thylakoid membranes contain virtually all components of the energy-converting photosynthetic machinery. Their energized state, driving ATP synthesis, is enabled by the bilayer organization of the membrane. However, their most abundant lipid species is a non-bilayer-forming lipid, monogalactosyl-diacylglycerol; the role of lipid polymorphism in these membranes is poorly understood. Earlier 31P-NMR experiments revealed the coexistence of a bilayer and a non-bilayer, isotropic lipid phase in spinach thylakoids. Packing of lipid molecules, tested by fluorescence spectroscopy of the lipophilic dye, merocyanine-540 (MC540), also displayed heterogeneity. Now, our 31P-NMR experiments on spinach thylakoids uncover the presence of a bilayer and three non-bilayer lipid phases; time-resolved fluorescence spectroscopy of MC540 also reveals the presence of multiple lipidic environments. It is also shown by 31P-NMR that: (i) some lipid phases are sensitive to the osmolarity and ionic strength of the medium, (ii) a lipid phase can be modulated by catalytic hydrogenation of fatty acids and (iii) a marked increase of one of the non-bilayer phases upon lowering the pH of the medium is observed. These data provide additional experimental evidence for the polymorphism of lipid phases in thylakoids and suggest that non-bilayer phases play an active role in the structural dynamics of thylakoid membranes.


Assuntos
Lipídeos/química , Espectroscopia de Ressonância Magnética , Isótopos de Fósforo , Espectrometria de Fluorescência , Tilacoides/química , Tilacoides/metabolismo , Catálise , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética/métodos , Espectrometria de Fluorescência/métodos
15.
Subcell Biochem ; 86: 127-57, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27023234

RESUMO

In this chapter we focus our attention on the enigmatic structural and functional roles of the major, non-bilayer lipid monogalactosyl-diacylglycerol (MGDG) in the thylakoid membrane. We give an overview on the state of the art on the role of MGDG and non-bilayer lipid phases in the xanthophyll cycles in different organisms. We also discuss data on the roles of MGDG and other lipid molecules found in crystal structures of different photosynthetic protein complexes and in lipid-protein assemblies, as well as in the self-assembly of the multilamellar membrane system. Comparison and critical evaluation of different membrane models--that take into account and capitalize on the special properties of non-bilayer lipids and/or non-bilayer lipid phases, and thus to smaller or larger extents deviate from the 'standard' Singer-Nicolson model--will conclude this review. With this chapter the authors hope to further stimulate the discussion about, what we think, is perhaps the most exciting question of membrane biophysics: the why and wherefore of non-bilayer lipids and lipid phases in, or in association with, bilayer biological membranes.


Assuntos
Cloroplastos/fisiologia , Galactolipídeos/fisiologia , Lipídeos/fisiologia , Tilacoides/fisiologia , Cloroplastos/química , Lipídeos/química , Estrutura Molecular , Tilacoides/química
16.
Biochim Biophys Acta ; 1857(4): 462-72, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26827938

RESUMO

Light-harvesting complex II (LHCII), the major peripheral antenna of Photosystem II in plants, participates in several concerted mechanisms for regulation of the excitation energy and electron fluxes in thylakoid membranes. In part, these include interaction of LHCII with Photosystem I (PSI) enhancing the latter's absorption cross-section - for example in the well-known state 1 - state 2 transitions or as a long-term acclimation to high light. In this work we examined the capability of LHCII to deliver excitations to PSI in reconstituted membranes in vitro. Proteoliposomes with native plant thylakoid membrane lipids and different stoichiometric ratios of LHCII:PSI were reconstituted and studied by steady-state and time-resolved fluorescence spectroscopy. Fluorescence emission from LHCII was strongly decreased in PSI-LHCII membranes due to trapping of excitations by PSI. Kinetic modelling of the time-resolved fluorescence data revealed the existence of separate pools of LHCII distinguished by the time scale of energy transfer. A strongly coupled pool, equivalent to one LHCII trimer per PSI, transferred excitations to PSI with near-unity efficiency on a time scale of less than 10ps but extra LHCIIs also contributed significantly to the effective antenna size of PSI, which could be increased by up to 47% in membranes containing 3 LHCII trimers per PSI. The results demonstrate a remarkable competence of LHCII to increase the absorption cross-section of PSI, given the opportunity that the two types of complexes interact in the membrane.


Assuntos
Complexos de Proteínas Captadores de Luz/química , Complexo de Proteína do Fotossistema I/química , Dicroísmo Circular , Proteolipídeos/química
17.
Proteomics ; 14(9): 1053-7, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24574175

RESUMO

We present a proteomics dataset combining SDS-PAGE prefractionation and data-dependent LC-MS/MS that enables the identification of phosphatidylglycerol-regulated proteins in the pgsA(-) mutant of Synechocystis sp. PCC6803, a cyanobacterium strain that grows with this indispensable phospholipid added exogenously. We searched the acquired raw data against a composite protein sequence database of Synechocystis using MASCOT, and employed Progenesis LC-MS software for label-free quantification based on extracted peptide intensities to detect changes in protein abundances upon phospholipid withdrawal. Protein identifications were validated using rigorous criteria, and our analysis of the dataset revealed 80 phosphatidylglycerol-regulated proteins involved in various cellular processes including photosynthesis, respiration, metabolism, transport, transcription, and translation. The data have been deposited to the ProteomeXchange with identifier PXD000363 (http://proteomecentral.proteomexchange.org/dataset/PXD000363).


Assuntos
Proteínas de Bactérias/análise , Fosfatidilgliceróis/metabolismo , Proteoma/análise , Proteômica/métodos , Synechocystis/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cromatografia Líquida/métodos , Proteoma/química , Proteoma/metabolismo , Synechocystis/metabolismo , Espectrometria de Massas em Tandem/métodos
19.
Prog Lipid Res ; 52(4): 539-61, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23896007

RESUMO

Carotenoids (CARs) are a group of pigments that perform several important physiological functions in all kingdoms of living organisms. CARs serve as protective agents, which are essential structural components of photosynthetic complexes and membranes, and they play an important role in the light harvesting mechanism of photosynthesizing plants and cyanobacteria. The protection against reactive oxygen species, realized by quenching of singlet oxygen and the excited states of photosensitizing molecules, as well as by the scavenging of free radicals, is one of the main biological functions of CARs. X-ray crystallographic localization of CARs revealed that they are present at functionally and structurally important sites of both the PSI and PSII reaction centers. Characterization of a CAR-less cyanobacterial mutant revealed that while the absence of CARs prevents the formation of PSII complexes, it does not abolish the assembly and function of PSI. CAR molecules assist in the formation of protein subunits of the photosynthetic complexes by gluing together their protein components. In addition to their aforementioned indispensable functions, CARs have a substantial role in the formation and maintenance of proper cellular architecture, and potentially also in the protection of the translational machinery under stress conditions.


Assuntos
Carotenoides/biossíntese , Oxigênio/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Carotenoides/química , Cianobactérias/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/química , Substâncias Protetoras/química , Substâncias Protetoras/metabolismo , Xantofilas/biossíntese , Xantofilas/química
20.
Biochim Biophys Acta ; 1817(2): 287-97, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22037395

RESUMO

Functional roles of an anionic lipid phosphatidylglycerol (PG) were studied in pgsA-gene-inactivated and cdsA-gene-inactivated/phycobilisome-less mutant cells of a cyanobacterium Synechocystis sp. PCC 6803, which can grow only in PG-supplemented media. 1) A few days of PG depletion suppressed oxygen evolution of mutant cells supported by p-benzoquinone (BQ). The suppression was recovered slowly in a week after PG re-addition. Measurements of fluorescence yield indicated the enhanced sensitivity of Q(B) to the inactivation by BQ. It is assumed that the loss of low-affinity PG (PG(L)) enhances the affinity for BQ that inactivates Q(B). 2) Oxygen evolution without BQ, supported by the endogenous electron acceptors, was slowly suppressed due to the direct inactivation of Q(B) during 10 days of PG depletion, and was recovered rapidly within 10h upon the PG re-addition. It is concluded that the loss of high-affinity PG (PG(H)) displaces Q(B) directly. 3) Electron microscopy images of PG-depleted cells showed the specific suppression of division of mutant cells, which had developed thylakoid membranes attaching phycobilisomes (PBS). 4) Although the PG-depletion for 14 days decreased the chlorophyll/PBS ratio to about 1/4, flourescence spectra/lifetimes were not modified indicating the flexible energy transfer from PBS to different numbers of PSII. Longer PG-depletion enhanced allophycocyanin fluorescence at 683nm with a long 1.2ns lifetime indicating the suppression of energy transfer from PBS to PSII. 5) Action sites of PG(H), PG(L) and other PG molecules on PSII structure are discussed.


Assuntos
Fosfatidilgliceróis/metabolismo , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/metabolismo , Plastoquinona/química , Plastoquinona/metabolismo , Benzoquinonas/antagonistas & inibidores , Benzoquinonas/metabolismo , Sítios de Ligação/efeitos dos fármacos , Catálise/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Cristalografia por Raios X , Transporte de Elétrons/efeitos dos fármacos , Modelos Biológicos , Modelos Moleculares , Organismos Geneticamente Modificados , Oxigênio/metabolismo , Oxigênio/farmacologia , Fosfatidilgliceróis/química , Fosfatidilgliceróis/farmacologia , Pigmentos Biológicos/química , Pigmentos Biológicos/metabolismo , Ligação Proteica/efeitos dos fármacos , Synechocystis/citologia , Synechocystis/efeitos dos fármacos , Synechocystis/genética , Synechocystis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...