Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38321867

RESUMO

The Arctic is undergoing rapid changes, and biota are exposed to multiple stressors, including pollution and climate change. Still, little is known about their joint impact. Here, we investigated the cumulative impact of crude oil, warming, and freshening on the copepod species Calanus glacialis and Calanus finmarchicus. Adult females were exposed to ambient conditions (control; 0 °C + 33 psu) and combined warming and freshening: 5 °C + 27 psu (Scenario 1), 5 °C + 20 psu (Scenario 2) for 6 days. All three conditions were tested with and without dispersed crude oil. In Scenario 1, fecal pellet production (FPP) significantly increased by 40-78% and 42-122% for C. glacialis and C. finmarchicus, respectively. In Scenario 2, FPP decreased by 6-57% for C. glacialis, while it fluctuated for C. finmarchicus. For both species, oil had the strongest effect on FPP, leading to a 68-83% reduction. This overshadowed the differences between climatic scenarios. All variables (temperature, salinity, and oil) had significant single effects and several joint effects on FPP. Our results demonstrate that Arctic copepods are sensitive to environmentally realistic concentrations of crude oil and climate change. Strong reductions in feeding can reduce the copepods' energy content with potential large-scale impacts on the Arctic marine food web.

2.
Environ Pollut ; 336: 122453, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37633434

RESUMO

Particles from tires are a major fraction of microplastic pollution. They contain a wide range of chemical additives that can leach into the water and be harmful to aquatic organisms. In this study, we investigated the acute toxicity of tire particle leachates in early life stages of three keystone echinoderm species (Paracentrotus lividus, Arbacia lixula, Diadema africanum). Embryos were exposed for 72 h to a range of leachate dilutions, prepared using a concentration of 1 g L-1. Larval growth, abnormal development, and mortality were the measured endpoints. Furthermore, we estimated the activity of glutathione S transferase (GST) and the electron transport system (ETS) in P. lividus. Strong concentration-dependent responses were observed in all species, though with differing sensitivity. The median effect concentrations for abnormal development in P. lividus and A. lixula were 0.16 and 0.35 g L-1, respectively. In D. africanum, mortality overshadowed abnormal development and the median lethal concentration was 0.46 g L-1. Larvae of P. lividus were significantly smaller than the control from 0.125 g L-1, while the other two species were affected from 0.5 g L-1. ETS activity did not change but there was a non-significant trend of increasing GST activity with leachate concentration in P. lividus. Seven organic chemicals and eight metals were detected at elevated concentrations in the leachates. While we regard zinc as a strong candidate to explain some of the observed toxicity, it can be expected that tire particle leachates exhibit a cocktail effect and other leached additives may also contribute to their toxicity. Our results emphasize the importance of multi-species studies as they differ in their susceptibility to tire particle pollution. We found negative effects at concentrations close to projections in the environment, which calls for more research and mitigation actions on these pollutants.

3.
Mar Pollut Bull ; 169: 112540, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34087664

RESUMO

Plastics are the most important component in marine debris. In turn, within plastics, microplastics (<5 mm) are those that most affect marine biota. Thus, this review has as its main objective to show the current state of studies of microplastics, as well as to determine the groups of vertebrates most affected by microplastics, and the type and predominant color of microplastics. For this research, we review a total of 132 articles, from 2010 to May of 2020. Our results show that the group more affected are turtles with 88% of the specimens contaminated by microplastics and median of 121.73 particles/individue. The predominant type is fibers (67.3%), polymer is polyethylene (27.3%), size is less than 2 mm (73.6%), and color is blue (32.9%).


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Biota , Monitoramento Ambiental , Plásticos , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...