Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 11448, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35794235

RESUMO

Today's mysticetes filter-feed using baleen, a novel integumentary structure with no apparent homolog in any living mammal. The origins of filter-feeding and baleen can be informed by the fossil record, including rare instances of soft tissue preservation of baleen and also by potential osteological correlates of baleen. Lateral palatal foramina on the roof of the mouth have been proposed as potential osteological correlates of baleen and their presence in some tooth-bearing stem mysticetes has led to the hypothesis that these early mysticetes possessed both teeth and incipient baleen. Here, we test this hypothesis by examining lateral palatal foramina in both filter-feeding and non-filter-feeding cetaceans, including crown and stem odontocetes and in stem cetaceans (or archaeocetes). We also confirm the presence of lateral palatal foramina in 61 species of terrestrial artiodactyls. CT scanning demonstrates consistent internal morphology across all observed taxa, suggesting that the lateral palatal foramina observed in extant mysticetes are homologous to those of terrestrial artiodactyls. The presence of lateral palatal foramina in terrestrial artiodactyls and non-filter-feeding whales (odontocetes and archaeocetes) suggests that these structures are not unique predictors for the presence of baleen in fossil whales; instead, these structures are more probably associated with gingiva or other oral tissue.


Assuntos
Fósseis , Dente , Animais , Evolução Biológica , Arcada Osseodentária/anatomia & histologia , Dente/anatomia & histologia , Baleias
2.
PeerJ ; 8: e9809, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33062412

RESUMO

BACKGROUND: Basilosaurid archaeocetes are known from the Late Eocene of virtually all coastlines bearing coeval marine rocks except the North Pacific Basin, until now. Here we report on three consecutive posterior thoracic vertebrae of a large, basilosaurid archaeocete from a Late Eocene horizon in the Keasey Formation in Oregon. METHODS: These vertebrae were morphologically and morphometrically compared to other vertebrae of similar age from around the world. RESULTS: The specimens were determined to be different from all currently named species of fossil cetacean, but most similar to those found in the Gulf Coast region of North America. These vertebrae represent the first confirmed specimen of a Late Eocene basilosaurid from the North Pacific. These and other basilosaurids known only from vertebrae are reviewed here in the context of Late Eocene paleoceanography and cetacean evolution.

3.
Proc Biol Sci ; 287(1924): 20200372, 2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32259471

RESUMO

There is no consensus about how terrestrial biodiversity was assembled through deep time, and in particular whether it has risen exponentially over the Phanerozoic. Using a database of 60 859 fossil occurrences, we show that the spatial extent of the worldwide terrestrial tetrapod fossil record itself expands exponentially through the Phanerozoic. Changes in spatial sampling explain up to 67% of the change in known fossil species counts, and these changes are decoupled from variation in habitable land area that existed through time. Spatial sampling therefore represents a real and profound sampling bias that cannot be explained as redundancy. To address this bias, we estimate terrestrial tetrapod diversity for palaeogeographical regions of approximately equal size. We find that regional-scale diversity was constrained over timespans of tens to hundreds of millions of years, and similar patterns are recovered for major subgroups, such as dinosaurs, mammals and squamates. Although the Cretaceous/Palaeogene mass extinction catalysed an abrupt two- to three-fold increase in regional diversity 66 million years ago, no further increases occurred, and recent levels of regional diversity do not exceed those of the Palaeogene. These results parallel those recovered in analyses of local community-level richness. Taken together, our findings strongly contradict past studies that suggested unbounded diversity increases at local and regional scales over the last 100 million years.


Assuntos
Biodiversidade , Extinção Biológica , Viés de Seleção , Animais , Evolução Biológica , Dinossauros , Fósseis , Mamíferos
4.
Nat Ecol Evol ; 3(4): 590-597, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30778186

RESUMO

The fossil record provides one of the strongest tests of the hypothesis that diversity within local communities is constrained over geological timescales. Constraints to diversity are particularly controversial in modern terrestrial ecosystems, yet long-term patterns are poorly understood. Here we document patterns of local richness in Phanerozoic terrestrial tetrapods using a global data set comprising 145,332 taxon occurrences from 27,531 collections. We show that the local richness of non-flying terrestrial tetrapods has risen asymptotically since their initial colonization of land, increasing at most threefold over the last 300 million years. Statistical comparisons support phase-shift models, with most increases in local richness occurring: (1) during the colonization of land by vertebrates, concluding by the late Carboniferous; and (2) across the Cretaceous/Paleogene boundary. Individual groups, such as mammals, lepidosaurs and dinosaurs also experienced early increases followed by periods of stasis often lasting tens of millions of years. Mammal local richness abruptly tripled across the Cretaceous/Paleogene boundary, but did not increase over the next 66 million years. These patterns are consistent with the hypothesis that diversity is constrained at the local-community scale.


Assuntos
Biodiversidade , Vertebrados , Animais , Evolução Biológica , Paleontologia
5.
Curr Biol ; 28(24): 3992-4000.e2, 2018 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-30503622

RESUMO

Whales use baleen, a novel integumentary structure, to filter feed; filter feeding itself evolved at least five times in tetrapod history but demonstrably only once in mammals [1]. Living baleen whales (mysticetes) are born without teeth, but paleontological and embryological evidence demonstrate that they evolved from toothed ancestors that lacked baleen entirely [2]. The mechanisms driving the origin of filter feeding in tetrapods remain obscure. Here we report Maiabalaena nesbittae gen. et sp. nov., a new fossil whale from early Oligocene rocks of Washington State, USA, lacking evidence of both teeth and baleen. The holotype possesses a nearly complete skull with ear bones, both mandibles, and associated postcrania. Phylogenetic analysis shows Maiabalaena as crownward of all toothed mysticetes, demonstrating that tooth loss preceded the evolution of baleen. The functional transition from teeth to baleen in mysticetes has remained enigmatic because baleen decays rapidly and leaves osteological correlates with unclear homology; the oldest direct evidence for fossil baleen is ∼25 million years younger [3] than the oldest stem mysticetes (∼36 Ma). Previous hypotheses for the origin of baleen [4, 5] are inconsistent with the morphology and phylogenetic position of Maiabalaena. The absence of both teeth and baleen in Maiabalaena is consistent with recent evidence that the evolutionary loss of teeth and origin of baleen are decoupled evolutionary transformations, each with a separate morphological and genetic basis [2, 6]. Understanding these macroevolutionary patterns in baleen whales is akin to other macroevolutionary transformations in tetrapods such as scales to feathers in birds.


Assuntos
Evolução Biológica , Fósseis/anatomia & histologia , Dente/anatomia & histologia , Baleias/anatomia & histologia , Baleias/classificação , Animais , Comportamento Alimentar , Arcada Osseodentária/anatomia & histologia , Paleontologia , Baleias/fisiologia
6.
Nat Ecol Evol ; 1(8): 1100-1106, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29046566

RESUMO

The end of the Pliocene marked the beginning of a period of great climatic variability and sea-level oscillations. Here, based on a new analysis of the fossil record, we identify a previously unrecognized extinction event among marine megafauna (mammals, seabirds, turtles and sharks) during this time, with extinction rates three times higher than in the rest of the Cenozoic, and with 36% of Pliocene genera failing to survive into the Pleistocene. To gauge the potential consequences of this event for ecosystem functioning, we evaluate its impacts on functional diversity, focusing on the 86% of the megafauna genera that are associated with coastal habitats. Seven (14%) coastal functional entities (unique trait combinations) disappeared, along with 17% of functional richness (volume of the functional space). The origination of new genera during the Pleistocene created new functional entities and contributed to a functional shift of 21%, but minimally compensated for the functional space lost. Reconstructions show that from the late Pliocene onwards, the global area of the neritic zone significantly diminished and exhibited amplified fluctuations. We hypothesize that the abrupt loss of productive coastal habitats, potentially acting alongside oceanographic alterations, was a key extinction driver. The importance of area loss is supported by model analyses showing that animals with high energy requirements (homeotherms) were more susceptible to extinction. The extinction event we uncover here demonstrates that marine megafauna were more vulnerable to global environmental changes in the recent geological past than previously thought.


Assuntos
Biodiversidade , Extinção Biológica , Fósseis , Vertebrados , Animais , Organismos Aquáticos
7.
PLoS One ; 12(5): e0178243, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28542468

RESUMO

The evolution of filter feeding in baleen whales (Mysticeti) facilitated a wide range of ecological diversity and extreme gigantism. The innovation of filter feeding evolved in a shift from a mineralized upper and lower dentition in stem mysticetes to keratinous baleen plates that hang only from the roof of the mouth in extant species, which are all edentulous as adults. While all extant mysticetes are born with a mandible lacking a specialized feeding structure (i.e., baleen), the bony surface retains small foramina with elongated sulci that often merge together in what has been termed the alveolar gutter. Because mysticete embryos develop tooth buds that resorb in utero, these foramina have been interpreted as homologous to tooth alveoli in other mammals. Here, we test this homology by creating 3D models of the internal mandibular morphology from terrestrial artiodactyls and fossil and extant cetaceans, including stem cetaceans, odontocetes and mysticetes. We demonstrate that dorsal foramina on the mandible communicate with the mandibular canal via smaller canals, which we explain within the context of known mechanical models of bone resorption. We suggest that these dorsal foramina represent distinct branches of the inferior alveolar nerve (or artery), rather than alveoli homologous with those of other mammals. As a functional explanation, we propose that these branches provide sensation to the dorsal margin of the mandible to facilitate placement and occlusion of the baleen plates during filer feeding.


Assuntos
Mandíbula/anatomia & histologia , Alvéolos Pulmonares/anatomia & histologia , Perda de Dente/fisiopatologia , Dente/anatomia & histologia , Baleias/anatomia & histologia , Baleias/fisiologia , Animais , Evolução Biológica , Filogenia
9.
Proc Biol Sci ; 281(1784): 20132049, 2014 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-24741007

RESUMO

There is accumulating evidence that macroevolutionary patterns of mammal evolution during the Cenozoic follow similar trajectories on different continents. This would suggest that such patterns are strongly determined by global abiotic factors, such as climate, or by basic eco-evolutionary processes such as filling of niches by specialization. The similarity of pattern would be expected to extend to the history of individual clades. Here, we investigate the temporal distribution of maximum size observed within individual orders globally and on separate continents. While the maximum size of individual orders of large land mammals show differences and comprise several families, the times at which orders reach their maximum size over time show strong congruence, peaking in the Middle Eocene, the Oligocene and the Plio-Pleistocene. The Eocene peak occurs when global temperature and land mammal diversity are high and is best explained as a result of niche expansion rather than abiotic forcing. Since the Eocene, there is a significant correlation between maximum size frequency and global temperature proxy. The Oligocene peak is not statistically significant and may in part be due to sampling issues. The peak in the Plio-Pleistocene occurs when global temperature and land mammal diversity are low, it is statistically the most robust one and it is best explained by global cooling. We conclude that the macroevolutionary patterns observed are a result of the interplay between eco-evolutionary processes and abiotic forcing.


Assuntos
Evolução Biológica , Tamanho Corporal , Fósseis , Mamíferos/fisiologia , Animais , Atmosfera , Biodiversidade , Oxigênio/análise , Temperatura
10.
Proc Biol Sci ; 280(1764): 20131007, 2013 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-23760865

RESUMO

Body size affects nearly all aspects of organismal biology, so it is important to understand the constraints and dynamics of body size evolution. Despite empirical work on the macroevolution and macroecology of minimum and maximum size, there is little general quantitative theory on rates and limits of body size evolution. We present a general theory that integrates individual productivity, the lifestyle component of the slow-fast life-history continuum, and the allometric scaling of generation time to predict a clade's evolutionary rate and asymptotic maximum body size, and the shape of macroevolutionary trajectories during diversifying phases of size evolution. We evaluate this theory using data on the evolution of clade maximum body sizes in mammals during the Cenozoic. As predicted, clade evolutionary rates and asymptotic maximum sizes are larger in more productive clades (e.g. baleen whales), which represent the fast end of the slow-fast lifestyle continuum, and smaller in less productive clades (e.g. primates). The allometric scaling exponent for generation time fundamentally alters the shape of evolutionary trajectories, so allometric effects should be accounted for in models of phenotypic evolution and interpretations of macroevolutionary body size patterns. This work highlights the intimate interplay between the macroecological and macroevolutionary dynamics underlying the generation and maintenance of morphological diversity.


Assuntos
Evolução Biológica , Tamanho Corporal , Modelos Biológicos , Animais , Mamíferos , Modelos Teóricos , Primatas , Baleias
11.
Proc Natl Acad Sci U S A ; 109(11): 4187-90, 2012 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-22308461

RESUMO

How fast can a mammal evolve from the size of a mouse to the size of an elephant? Achieving such a large transformation calls for major biological reorganization. Thus, the speed at which this occurs has important implications for extensive faunal changes, including adaptive radiations and recovery from mass extinctions. To quantify the pace of large-scale evolution we developed a metric, clade maximum rate, which represents the maximum evolutionary rate of a trait within a clade. We applied this metric to body mass evolution in mammals over the last 70 million years, during which multiple large evolutionary transitions occurred in oceans and on continents and islands. Our computations suggest that it took a minimum of 1.6, 5.1, and 10 million generations for terrestrial mammal mass to increase 100-, and 1,000-, and 5,000-fold, respectively. Values for whales were down to half the length (i.e., 1.1, 3, and 5 million generations), perhaps due to the reduced mechanical constraints of living in an aquatic environment. When differences in generation time are considered, we find an exponential increase in maximum mammal body mass during the 35 million years following the Cretaceous-Paleogene (K-Pg) extinction event. Our results also indicate a basic asymmetry in macroevolution: very large decreases (such as extreme insular dwarfism) can happen at more than 10 times the rate of increases. Our findings allow more rigorous comparisons of microevolutionary and macroevolutionary patterns and processes.


Assuntos
Evolução Biológica , Mamíferos/anatomia & histologia , Mamíferos/genética , Animais , Peso Corporal , Camundongos , Característica Quantitativa Herdável , Fatores de Tempo
12.
Science ; 330(6008): 1216-9, 2010 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-21109666

RESUMO

The extinction of dinosaurs at the Cretaceous/Paleogene (K/Pg) boundary was the seminal event that opened the door for the subsequent diversification of terrestrial mammals. Our compilation of maximum body size at the ordinal level by sub-epoch shows a near-exponential increase after the K/Pg. On each continent, the maximum size of mammals leveled off after 40 million years ago and thereafter remained approximately constant. There was remarkable congruence in the rate, trajectory, and upper limit across continents, orders, and trophic guilds, despite differences in geological and climatic history, turnover of lineages, and ecological variation. Our analysis suggests that although the primary driver for the evolution of giant mammals was diversification to fill ecological niches, environmental temperature and land area may have ultimately constrained the maximum size achieved.


Assuntos
Evolução Biológica , Tamanho Corporal , Mamíferos/anatomia & histologia , Animais , Atmosfera , Ecossistema , Meio Ambiente , Extinção Biológica , Fósseis , Geografia , Mamíferos/classificação , Mamíferos/crescimento & desenvolvimento , Modelos Biológicos , Oxigênio , Filogenia , Temperatura
13.
Science ; 327(5968): 993-6, 2010 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-20167785

RESUMO

Modern cetaceans, a poster child of evolution, play an important role in the ocean ecosystem as apex predators and nutrient distributors, as well as evolutionary "stepping stones" for the deep sea biota. Recent discussions on the impact of climate change and marine exploitation on current cetacean populations may benefit from insights into what factors have influenced cetacean diversity in the past. Previous studies suggested that the rise of diatoms as dominant marine primary producers and global temperature change were key factors in the evolution of modern whales. Based on a comprehensive diversity data set, we show that much of observed cetacean paleodiversity can indeed be explained by diatom diversity in conjunction with variations in climate as indicated by oxygen stable isotope records (delta18O).


Assuntos
Evolução Biológica , Cetáceos , Mudança Climática , Diatomáceas , Ecossistema , Fósseis , Baleias , Animais , Biodiversidade , Cetáceos/classificação , Cetáceos/fisiologia , Comportamento Alimentar , Cadeia Alimentar , Sedimentos Geológicos , Oceanos e Mares , Água do Mar , Temperatura , Baleias/classificação , Baleias/fisiologia
14.
Biol Rev Camb Philos Soc ; 83(4): 417-40, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18783363

RESUMO

In a recent publication in Biological Reviews, Manger (2006) made the controversial claim that the large brains of cetaceans evolved to generate heat during oceanic cooling in the Oligocene epoch and not, as is the currently accepted view, as a basis for an increase in cognitive or information-processing capabilities in response to ecological or social pressures. Manger further argued that dolphins and other cetaceans are considerably less intelligent than generally thought. In this review we challenge Manger's arguments and provide abundant evidence that modern cetacean brains are large in order to support complex cognitive abilities driven by social and ecological forces.


Assuntos
Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Cetáceos/anatomia & histologia , Cetáceos/fisiologia , Cognição/fisiologia , Adaptação Fisiológica , Animais , Evolução Biológica , Tamanho Corporal/fisiologia , Regulação da Temperatura Corporal/fisiologia , Oceanos e Mares , Especificidade da Espécie , Termogênese/fisiologia
16.
Anat Rec (Hoboken) ; 290(6): 514-22, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17516441

RESUMO

The fossil record demonstrates that mammals re-entered the marine realm on at least seven separate occasions. Five of these clades are still extant, whereas two are extinct. This review presents a brief introduction to the phylogeny of each group of marine mammals, based on the latest studies using both morphological and molecular data. Evolutionary highlights are presented, focusing on changes affecting the sensory systems, locomotion, breathing, feeding, and reproduction in Cetacea, Sirenia, Desmostylia, and Pinnipedia. Aquatic adaptations are specifically cited, supported by data from morphological and geochemical studies. For example, analysis of oxygen isotopes incorporated into fossil tooth enamel indicates whether these mammals foraged in (and, therefore, ingested) fresh water or sea water. Comparisons between groups are made to see if there are any common patterns, particularly relating to adaptations to aquatic life. Results show that aquatic characteristics evolved in mosaic patterns and that different morphological solutions to aquatic conditions were achieved separately in each of these groups. Changes in the axial and appendicular skeleton assist with locomotion for aquatic foraging. Nostril and eye placement modifications accommodate wading versus underwater foraging needs. All groups exhibit aquatic adaptations directly related to feeding, particularly changes in the dentition and rostrum. The earliest representatives of these clades all show morphological features that indicate they were feeding while in the water, suggesting that feeding ecology is a key factor in the evolution of marine mammals.


Assuntos
Adaptação Fisiológica/fisiologia , Evolução Biológica , Ecossistema , Comportamento Alimentar/fisiologia , Mamíferos , Adaptação Psicológica/fisiologia , Animais , Mamíferos/anatomia & histologia , Mamíferos/fisiologia , Mamíferos/psicologia , Oceanos e Mares , Filogenia
17.
Anat Rec A Discov Mol Cell Evol Biol ; 281(2): 1247-55, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15497142

RESUMO

Toothed whales (order Cetacea: suborder Odontoceti) are highly encephalized, possessing brains that are significantly larger than expected for their body sizes. In particular, the odontocete superfamily Delphinoidea (dolphins, porpoises, belugas, and narwhals) comprises numerous species with encephalization levels second only to modern humans and greater than all other mammals. Odontocetes have also demonstrated behavioral faculties previously only ascribed to humans and, to some extent, other great apes. How did the large brains of odontocetes evolve? To begin to investigate this question, we quantified and averaged estimates of brain and body size for 36 fossil cetacean species using computed tomography and analyzed these data along with those for modern odontocetes. We provide the first description and statistical tests of the pattern of change in brain size relative to body size in cetaceans over 47 million years. We show that brain size increased significantly in two critical phases in the evolution of odontocetes. The first increase occurred with the origin of odontocetes from the ancestral group Archaeoceti near the Eocene-Oligocene boundary and was accompanied by a decrease in body size. The second occurred in the origin of Delphinoidea only by 15 million years ago.


Assuntos
Encéfalo/anatomia & histologia , Cetáceos/anatomia & histologia , Evolução Molecular , Tomografia Computadorizada Espiral , Animais , Tamanho Corporal/fisiologia , Cetáceos/fisiologia , Fósseis , Dente
18.
Anat Rec B New Anat ; 272(1): 107-17, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12731077

RESUMO

Until recently, there have been relatively few studies of brain mass and morphology in fossil cetaceans (dolphins, whales, and porpoises) because of difficulty accessing the matrix that fills the endocranial cavity of fossil cetacean skulls. As a result, our knowledge about cetacean brain evolution has been quite limited. By applying the noninvasive technique of computed tomography (CT) to visualize, measure, and reconstruct the endocranial morphology of fossil cetacean skulls, we can gain vastly more information at an unprecedented rate about cetacean brain evolution. Here, we discuss our method and demonstrate it with several examples from our fossil cetacean database. This approach will provide new insights into the little-known evolutionary history of cetacean brain evolution.


Assuntos
Encéfalo/anatomia & histologia , Cetáceos/anatomia & histologia , Filogenia , Tomografia Computadorizada Espiral , Animais , Pesos e Medidas Corporais , Fósseis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...